Appraisal of dental enamel hypoplasia in the Middle Miocene Deinotheriidae: implications of the Siwalik paleoenvironment of Pakistan
DOI:
https://doi.org/10.4072/rbp.2021.4.06Resumo
The paleoecological fluctuations left their impression marks on the tooth enamel of mammals during their tooth development. These marks can be used as stress indicators because they reflect the type of duress faced by the extinct mammalian species during their lives. The enamel hypoplasia (EH) is a common stress marker to trace out the paleoenvironment of the region and the likelihood of species extinction. The material used for current EH analysis belongs to the genus Deinotherium, family Deinotheriidae, collected from Middle Miocene (15.2–11.2 Ma) Siwaliks of Pakistan. In this analysis 35 samples consisting of 52 teeth of two species, Deinotherium pentapotamiae and D. indicum, are included. The results indicate that 13/52 (25%) of the analyzed teeth have occurrences of EH giving a prediction that these Siwalik deinotheriids were facing the physiological and/or ecological stresses during the Middle Miocene epoch of Pakistan. The
higher frequency of EH in molars (30.30%) compared to premolars (21.05%) express that the individuals experienced a comparatively high stress at the adult stages of their lives. This higher magnitude of EH in molars supports the idea of ecological stressors, i.e., dietary, mating, disease, and predator-prey associations, amplify the likelihood of extinction by dint of EH occurrences.
Keywords: enamel hypoplasia, Siwaliks, Middle Miocene, Proboscidea, Deinotherium, root crown junction.
RESUMO – As flutuações paleoecológicas deixaram suas marcas impressas sobre o esmalte dentário durante o desenvolvimento dos dentes dos mamíferos. Essas marcas podem ser usadas como indicadoras de estresse porque refletem o tipo de pressão enfrentado pelas espécies extintas de mamíferos durante suas vidas. A hipoplasia de esmalte (HE) é um marcador de estresse comum para sugerir o paleoambiente e a probabilidade de extinção de espécies. Para análise de HE, o presente estudo avaliou material pertencente ao gênero Deinotherium, família Deinotheriidae, proveniente do Mioceno Médio (15,2–11,2 Ma) de Siwalik, Paquistão. Nesta análise foram incluídas 35 amostras, consistindo em 52 dentes de duas espécies, Deinotherium pentapotamiae e D. indicum. Os resultados indicam que em 13/52 (25%) dos dentes analisados ocorre EH, indicando que estes deinoterídeos de Siwalik estavam enfrentando um estresse fisiológico e/ou ecológico durante o Mioceno Médio no Paquistão. A elevada frequência de HE em molares (30,30%) em relação aos pré-molares (21,05%) expressa que os indivíduos
experimentaram um estresse comparativamente elevado na fase adulta de suas vidas. A magnitude maior de HE aqui observada em molares
suporta a ideia de estressores ecológicos, ou seja, dieta, acasalamento, doenças e associação presa-predador, aumentando a probabilidade de
extinção por causa das ocorrências de HE.
Palavras-chave: hipoplasia de esmalte, Siwaliks, Mioceno Médio, Proboscidea, Deinotherium, junção raiz coroa.
Referências
REFERENCES
Mckenna, M.C. & Bell, S.K. 1997. Classification of Mammals above the Species Level. Columbia University Press, New York.
Prothero, D.R.; Manning, E.M. & Fischer, M. 1988. The phylogeny of the ungulates: The Phylogeny and Classification of the Tetrapods. M.J. Benton ed. Mammals, Vol. 2. Clarendon Press, Oxford., 201–234.
Shoshani, J. & Tassy, P. 2005. Advances in proboscidean taxonomy and classification, anatomy and physiology, and ecology and behavior. Quaternary International, 126:5–20. DOI: 10.1016/j.quaint.2004.04.011.
Kierdorf, H.; Witzel, C.; Upex, B.; Dobney, K. & Kierdorf, U. 2012. Enamel hypoplasia in molars of sheep and goats, and its relationship to the pattern of tooth crown growth. Journal of Anatomy, 220:484–495. doi: 10.1111/j.1469-7580.2012.01482.x.
Pindborg, J.J. 1982. Aetiology of developmental enamel defects not related to fluorosis. Int. Dent. J., 32(2):123-134.
White, T.D. 1978. Early hominid enamel hypoplasia. Amer. J. Phys. Anthropol., 49:79-84. doi.org/10.1002/ajpa.1330490112.
Hillson, S. 1986. Teeth. Cambridge University Press, Cambridge. 376.
Moggi-Cecchi, J.; Pacciani, E. & Pinto-Cisternas, J. 1994. Enamel hypoplasia and age at weaning in 19th-Century Florence, Italy. Amer. J. Phys. Anthropol., 93:299-306. doi:10.1002/ajpa.1330930303
Roohi, G.; Raza, S.M.; Khan, A.M.; Ahmad, R.M. & Akhtar, M. 2015. Enamel Hypoplasia in Siwalik Rhinocerotids and its Correlation with Neogene Climate. Pak. J. Zool., 47(5):1433-1443.
Ahmad, R.M.; Khan, A.M.; Roohi, G. & Akhtar M. 2018. Enamel Hypoplasia Analysis in Giraffids to Compare Stress Episodes in Geological History of the Siwaliks of Pakistan. Pak. J. Zool., 50(1):149-158. DOI: 10.17582/journal.pjz/2018.50.1.149.158.
Sarwar, 1977. Taxonomy and the distribution of the Siwalik Proboscidea. Bulletin of the department of zoology, university of the Punjab, Lahore.
Tiwari, B.N.; Verma, B.C. & Bhandari, A. 2006. Record of Prodeinotherium (Proboscidea; Mammalia) from the mid-tertiary Dharmashala Group of Kangra valley, N.W. Himalaya, India: biochronological and Palaeobiogeographic implicstions. J. Palaeont. Soci. India, 51(1):93-100.
Harris, J.M. 1973. Prodeinotherium from Gabel Zelten, Libya. Bulletin British Museum Natural History London (Geology), 23,285-350.
TASSY, P. 1996a. Dental homologies and nomenclature in Proboscidea. – In: Shoshani J., Tassy P. (eds). The Proboscidea. Evolution and Palaeoecology of Elephants and their Relatives. Oxford University Press, Oxford, New York, Tokyo, 21-25.
Harris, J.M. 1976. Cranial and dental remains of Deinotherium bozasi (Mammalia: Proboscidea) from East Rudolf, Kenya. J. Zool. Lond., 178:57-75. doi.org/10.1111/j.1469-7998.1976.tb02263.x.
Mead, A.J. 1999. Enamel hypoplasia in Miocene rhinoceroses (Teleoceras) from Nebraska: evidence of severe physiological stress. J. Vert. Paleontol., 19(2):391-397. doi.org/10.1080/02724634.1999.10011150.
Cohen, J. 1960. A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20:37-46. doi.org/10.1177/001316446002000104.
Colbert, E.H. 1935. Siwalik mammals in the American Museum of Natural History, Trans. American Phil. Soc. (NS), 29-36.
Franz-Odendaal, T.A. 2004. Enamel hypoplasia provides insights into early systemic stress in wild and captive giraffes (Giraffa Camelopardalis). J. Zool. Lond., 263: 197–206. doi.org/10.1638/06-032.1.
Goodman, A.H. & Rose, J.C. 1991. Dental enamel hypoplasia as indicators of nutritional status. Advances in dental anthropology, (Eds. M. Kelly and C. Larsen). New York: Wiley-Liss, 279-293.
King, T.; Humphrey, L.T. & Hillson, S. 2005. Linear Enamel Hypoplasias as Indicators of Systemic Physiological Stress: Evidence from two known age-at-death and Sex Populations from post-medieval London. Am. J. Phys. Anthropol., 128:547-559. DOI:10.1002/ajpa.20232.
Badgley, K.; Barry, J.C.; Morgan, M.E.; Nelson, S.V.; Behrensmeyer, A.K.; Cerling, T.E. & Pilbeam, D. 2008. Ecological changes in Miocene mammalian record show impact of prolonged climatic forcing. Proc. Nat. Acad. Sci., 105(34):12145–12149. doi.org/10.1073/pnas.0805592105
Quade, J.T.; Cerlinga, E.J.; Barry, C.M.; Morgan, E.D.; Pilbeam, R.A.; Chivas, R.J.; Lee-Thorp, A.N. & Merwe, J. 1992. A 16-Ma record of paleodiet using carbon and oxygen isotopes in fossil teeth from Pakistan. Chemical Geology: Isotope Geoscience section, 94(3):183-192. doi.org/10.1016/0168-9622(92)90011-X.
Quade, J. & Cerling, T.E. 1995. Expansion of C4 grasses in the Late Miocene of Northern Pakistan: evidence from stable isotopes in paleosoles. Palaeogeography, Palaeoclimatology, Palaeoecology, 115 (1-4):91-116. doi.org/10.1016/0031-0182(94)00108-K.
Barry, J.C.; Morgan, M.E.; Flynn, L.J.; Pilbeam, D.; Behrensmeyer, A.K.; Raza, S.M.; Khan, I.A.; Badgley, K.; Hicks, J. & Kelley, J. 2002. Faunal and Environmental Change in the Late Miocene Siwaliks of Northern Pakistan. Paleobiology, 28(2):1-71. doi.org/10.1666/0094-8373(2002)28[1:FAECIT]2.0.CO;2.
Westerhold, T.; Bickert, T. & Rohl, U. 2005. Middle to late Miocene oxygen isotope stratigraphy of ODP site 1085 (SE Atlantic): new constrains on Miocene climate variability and sea-level fluctuations. Palaeogeography, Palaeoclimatology, Palaeoecology, 217:205-222. doi:10.1016/j.palaeo.2004.12.001.
Holbourn, A.; Kuhnt, W.; Clemens, S.; Prell, W. & Andersen, N. 2013. Middle to late Miocene stepwise climate cooling: Evidence from a high-resolution deep water isotope curve spanning 8 million years. Paleoceanography, 28:688–699. doi:10.1002/2013PA002538.
Harris, J.M. 1975. Evolution of feeding mechanisms in the family Deinotheridae (Mammalia: Proboscidea). Zool. J. Linnean Soc., 56(4): 331-362.
Raza, S.M.; Barry, J.C.; Meyer, G.E. & Martin, L. 1984. Preliminary report on the Geology and Vertebrate Fauna of the Miocene Manchar Formation, Sind, Pakistan. J. Vert. Paleont., 4(4): 584-599. doi.org/10.1080/02724634.1984.10012034.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 Revista Brasileira de Paleontologia
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives license (http://creativecommons.org/licenses/by-nc-nd/4.0), which permits non-commercial re-use, distribution, and reproduction in any medium, provided that no alterations are made and the original article is properly cited. The written permission of Revista Brasileira de Paleontologia must be obtained before any commercial use and/or adaptation of the article.