Isotopic paleoecology (δ13C, δ18O) of a late Pleistocene vertebrate community from the Brazilian Intertropical Region


  • Mário André Trindade Dantas Laboratório de Ecologia e Geociências, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia – Campus Anísio Teixeira, Vitória da Conquista, BA, Brazil.
  • Alexander Cherkinsky Center for Applied Isotope Studies, University of Georgia, Athens, GA 30602, USA.
  • Carlos Micael Bonfim Lessa Laboratório de Ecologia e Geociências, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia – Campus Anísio Teixeira, Vitória da Conquista, BA, Brazil.
  • Luciano Vilaboim Santos Programa de Pós-Graduação em Zoologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
  • Mario Alberto Cozzuol Programa de Pós-Graduação em Zoologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
  • Érica Cavalcante Omena Programa de Pós-Graduação em Geociências, Universidade Federal de Pernambuco, Recife, PE, Brazil.
  • Jorge Luiz Lopes Silva Departamento de Paleontologia, Museu de História Natural, Universidade Federal de Alagoas, Maceió, AL, Brazil.
  • Alcides Nóbrega Sial NEG-LABISE, Departamento de Geologia, Centro de Tecnologia e Geociências, Universidade Federal de Pernambuco, Recife, PE, Brazil.
  • Hervé Bocherens Biogeology, Department of Geosciences and Senckenberg Center for Human Evolution and Palaeoenvironment (HEP), Universität Tübingen, Hölderlinstr. 12, 72074 Tübingen, Germany.



Isotopes are one of the best tools to reconstruct the paleoecology of extinct taxa, allowing us to evaluate their diet (through carbon; C3 and C4 plants), their niche breadth (BA) and the environment in which they lived. In the present work we go deeper in the use of isotopes, and explore a mathematical mixing model with the stable isotopic composition of one (carbon) and two elements (carbon and oxygen) to evaluate (i) the relative contributions of three types of food resources (leaves, fruits and C4 grass) for meso- and megaherbivores (body mass > 100 kg) that lived during the late Pleistocene in Sergipe, Brasil, and (ii) which of these herbivores (together with some faunivorous taxa) could be potential preys for Smilodon populator and Caiman latirostris. Finally, we reconstructed the paleoenvironment in which the vertebrate community of Sergipe lived and concluded that the environment of Sergipe was a closer and drier landscape than African savannah nowadays, at least between 27 ka to 11 ka.

Keywords: Quaternary, mammals, paleoecology, South America, stable isotopes.

Isotópos são uma das melhores ferramentas para reconstruir a Paleoecologia de táxons extintos, permitindo sugerir dieta (por meio do carbono, plantas C3 e C4), o nicho ecológico (BA) e ambiente em que viveram. No presente artigo nos aprofundamos no uso dos isotópos, e exploramos um modelo matemático misto com um isotópo (carbono) e dois isotópos (carbono e oxigênio) (i) para sugerir três recursos tipos de recursos alimentares (folhas, frutas e gramíneas C4) para meso-megaherbívoros (massa corporal acima de 100 kg) que viveram no Pleistoceno final de Sergipe, Brasil, e (ii) qual desses herbívoros (juntamente com faunívoros) foram presas potenciais de Smilodon populator e Caiman latirostris. Por fim, reconstruímos o paleoambiente na qual a comunidade de vertebrados de Sergipe viveu, concluindo que era
mais fechada e seca do que as savanas da Africa atualmente, pelo menos entre 27 mil a 11 mil anos atrás.

Palavras-chave: Quaternário, paleoecologia, América do Sul, isotópos estáveis.


Anderson, J.F.; Hall Martin. A.; Russel, D.A., 1985. Long-bone circumference and weight in mammals, birds and dinosaurs. J Zool, 207:53-61.

Azevedo, F. C. C. & Verdade, L. M. 2011. Predator–prey interactions: jaguar predation on caiman in a floodplain forest. Journal of Zoology, 286:200–207. doi:10.1111/j.1469-7998.2011.00867.x

Badeck FW, Tcherkez G, Nogues S, Piel C, Ghashghaie J. 2005. Post-photosynthetic fractionation of stable carbon isotopes between plant organs - a widespread phenomenon. Rapid Communications in Mass Spectrometry, 19:1381-1391.

Bargo, M.S.; De Iuliis, G.; Vizcaíno, S.F., 2006a. Hypsodonty in Pleistocene ground sloths. Acta Palaeontol Pol, 51(1):53-61.

Bargo, M.S.; Toledo, N.; Vizcaíno, S.F., 2006b. Muzzle of South American Pleistocene ground sloths (Xenarthra, Tardigrada). J Morphol, 267:248-263.

Bocherens, H.; Koch, P.L.; Mariotti, A.; Geraards, D.; Jaeger, J.J. 1996. Isotopic biogeochemistry (13C, 18O) of mammalian enamel from African Pleistocene hominid sites. Palaios, 11:306–318.

Bocherens, H., Sandrock, O., Kullmer, O., Schrenk, F. 2011. Hominin palaeoecology in Late Pliocene Malawi: Insights from isotopes (13C, 18O) in mammal teeth. South African Journal of Science, 107(3/4):95-100.

Bocherens, H.; Drucker, D.G. 2013. Terrestrial Teeth and Bones. In: Elias S.A. (ed.). The Encyclopedia of Quaternary Science, 1:304-314. Amsterdam: Elsevier.

Bocherens, H.; Cotte, M.; Bonini, R.; Scian, D.; Straccia, P.; Soibelzon, L.; Prevosti, F.J. 2016. Paleobiology of sabretooth cat Smilodon populator in the Pampean Region (Buenos Aires Province, Argentina) around the Last Glacial Maximum: Insights from carbon and nitrogen stable isotopes in bone collagen. Palaeogeogr Palaeoclimatol Palaeoecol, 449:463–474. doi: 10.1016/j.palaeo.2016.02.017

Cartelle, C.; Abuhid, V.S. 1989. Novos espécimes brasileiros de Smilodon populator Lund, 1842 (Carnivora, Machairodontinae): morfologia e conclusões taxonômicas. In: Congresso Brasileiro de Paleontologia, 11, 1989. Anais, Curitiba, 1, 607-620.

Castro, M.C. de; Langer, M.C. 2008. New postcranial remains of Smilodon populator Lund, 1842 from south-central Brazil. Rev Bras Paleontolog, 11(3):199-206. doi: 10.4072/rbp.2008.3.06

Cerling, T.E; Harris, J.M.; Hart, J.A.; Kaleme, P.; Klingel, H.; Leakey, M.G.; Levin, N.E.; Lewison, R.L.; Passey, B.H. 2008. Stable isotope ecology of the common hippopotamus. J Zool, 276:204-212. doi:10.1111/j.1469-7998.2008.00450.x

Cernusak, L.A.; Tcherkez, G.; Keitel, C.; Cornwell, W.K.; Santiago, L.S.; Knohl, A. Barbour, M.M.; Williams, D.G.; Reich, P.B.; Ellsworth, D.S.; Dawson, T.E.; Griffiths, H.G.; Farquhar, G.D.; Wright, I. 2009. Why are non-photosynthetic tissues generally 13C enriched compared with leaves in C3 plants? Review and synthesis of current hypotheses. Funct Plant Biol, 36(3):199-213. doi: 10.1071/FP08216

Cherkinsky, A. 2009. Can we get a good radiocarbon age from “bad bone”? Determining the reliability of radiocarbon age from bioapatite. Radiocarbon, 51(2):647-655.

Coe, M.J.; Cumming D.H.; Phillipson, J. 1976. Biomass and production of large African herbivores in relation to rainfall and primary production. Oecologia, 22:341-354.

Coplen, T.B. 1994. Reporting of stable hydrogen, carbon, and oxygen isotopic abundances. Pure Appl Chem, 66:273–276.

Dantas, M. A. T. & Zucon, M. H. 2007. Occurrence of Catonyx cuvieri (Lund, 1839) (Tardigrada, Scelidotheriinae) in Late Pleistocene-Holocene of Brazil. Rev. bras. paleontol, 10(2):129-132.

Dantas, M.A.T.; Porpino, K.O.; Bauermann, S.G.; Prata, A.P.N.; Cozzuol, M.A.; Kinoshita, A.; Barbosa, J.H.O.; Baffa, O. 2011. Megafauna do Pleistoceno superior de Sergipe, Brasil: registros taxonômicos e cronológicos. Rev Bras Paleontolog, 14(3):311–320. doi:10.4072/rbp.2011.3.10

Dantas MAT, Santos DB, Liparini A, Queiroz AN, Carvalho OA, Castro ÉSV, Cherkinsky A. 2014. A dated evidence of the interaction between humans and megafauna in the late Pleistocene of Sergipe state, northeastern Brazil. Quat Int, 352:197-199. doi: 10.1016/j.quaint.2014.09.040

Dantas, M.A.T.; Cherkinsky, A.; Bocherens, H.; Drefahl, M.; Bernardes, C.; França, L. de M. 2017. Isotopic paleoecology of the Pleistocene megamammals from the Brazilian Intertropical Region: Feeding ecology (δ13C), niche breadth and overlap. Quat Sci Rev, 170:152-163. doi: 10.1016/j.quascirev.2017.06.030

Diefendorf, A.F.; Mueller, K.E.; Wing, S.L.; Koch, P.L.; Freeman, K.H. 2010. Global patterns in leaf 13C discrimination and implications for studies of past and future cimate. Proc Natl Acad Sci USA, 107:5738–5743.

Dixon, D.M. 1989. A note on some scavengers of ancient Egypt. World Archaeol, 21(2):193-197.

Downing, K.F.; White, R.S. 1995. The cingulates (Xenarthra) of the Leisey Shell Pit local fauna (Irvingtonian), Hillsborough County, Florida. Bull Florida Mus Nat Hist, 37:375-396.

França LM, Dantas MAT, Bocchiglieri A, Cherkinsky A, Ribeiro AS, Bocherens H. 2014a. Chronology and ancient feeding ecology of two upper Pleistocene megamammals from the Brazilian Intertropical Region. Quat Sci Rev, 99:78-83. doi: 10.1016/j.quascirev.2014.04.028

França, L. de M.; Fortier, D.C.; Bocchiglieri, A.; Dantas, M.A.T.; Liparini, A.; Cherkinsky, A.; Ribeiro, A. de S. 2014b. Radiocarbon dating and stable isotopes analyses of Caiman latirostris (Daudin, 1801) (Crocodylia, Alligatoridae) from the late Pleistocene of Northeastern Brazil, with comments on spatial distribution of the species. Quat Int, 352:159-163. doi: 10.1016/j.quaint.2014.06.046

Gillette, D. D. & Ray, C. E. 1981. Glyptodonts of North America. Smithsonian Contributions to Paleobiology, 40:1-255.

Hammer, Ø., Harper, D.A.T., Ryan, P.D., 2001. PAST: Paleontologial Statistics Software Package for Education and Data Analysis. Palaeontol Electron, 4:1–9.

Hayward, M.W. & Kerley, G.I.H. 2005. Prey preferences on the lion (Panthera leo). J Zool Lond, 267:309-322.

Jenkins, S.G.; Partridge, S.T.; Stephenson, T.R.; Farley, S.D.; Robbins, C.T. 2001. Nitrogen and carbon isotope fractionation between mothers, neonates, and nursing offspring. Oecologia, 129:336-341.

Keeling, C.D. 1979. The Suess effect: 13Carbon-14Carbon interrelations. Environ Int, 2:229–300.

Kigston, J.D.; Harrison, T. 2007. Isotopic dietary reconstructions of Pliocene herbivores at Laetoli: Implications for early hominin paleoecology. Palaeogeogr Palaeoclimatol Palaeoecol, 243:272–306. doi:10.1016/j.palaeo.2006.08.002

Kohn, M.J. 2010. Carbon isotopic compositions of terrestrial C3 plants as indicator of (paleo)ecology and (paleo)climate. Proc Natl Acad Sci USA 107, 19691–19695.

Lee-Thorp JA, Sponheimer M. 2003. Three case studies used to reassess the reliability of fossil bone and enamel isotope signals for paleodietary studies. J Anthropol Archaeol, 22:208–216.

Levin NE, Cerling TE, Passey BH, Harris JM, Ehleringer JR. 2006. A stable isotope aridity index for terrestrial environments. Proc Natl Acad Sci USA, 103:11201–11205.

Levins, R. 1968. Evolution in changing environments. New Jersey, Princeton University Press, IX+120p.Loveridge, A.J.; Hunt, J.E.; Murindagomo, F.; MacDonald, D.W. 2006. Influence of drought on predation of elephant (Loxodonta africana) calves by lions (Panthera leo) in an African wooded savannah. Journal of Zoology, 270:523-530. doi: 10.1111/j.1469-7998.2006.00181.x

MacFadden, B.J. 2005. Diet and habitat of toxodont megaherbivores (Mammalia, Notoungulata) from the late Quaternary of South and Central America. Quat Res, 64:113–124.

Marcolino, C.P.; Isaias, R.M. dos S.; Cozzuol, M.A.; Cartelle, C.; Dantas, M.A.T. 2012. Diet of Palaeolama major (Camelidae) of Bahia, Brazil, inferred from coprolites. Quat Int, 278:81-86. doi:10.1016/j.quaint.2012.04.002

Marshall, J.D.; Brooks, J.R.; Lajtha, K. 2007. Sources of variation in the stable isotopic composition of plants. In Michemer, K. (Eds.), Stable Isotopes in Ecology and Environmental Science, second ed. Blackwell Publishing, Malden, MA, pp. 22-60.

Molena, F.P. 2012. Variação individual no esqueleto apendicular de mastodontes (Proboscidea: Gomphotheriidae) provenientes de São Bento do Una, Pernambuco, Brasil. Dissertação de Mestrado, Universidade de São Paulo, São Paulo.

Oliveira, A.M.; Becker-Kerber, B.; Cordeiro, L.M.; Borghezan, R.; Avilla, L.S.; Pacheco, M.L.A.F.; Santos, C.M.D. 2017. Quaternary mammals from Central Brazil (Serra da Bodoquena, Mato Grosso do Sul) and comments on Paleobiogeography and Paleoenvironments. Rev Bras Paleontolog, 20(1):31-44. doi: 10.4072/rbp.2017.1.03

Oliveira, J.F.; Asevedo, L.; Cherkinsky, A.; Dantas, M.A.T. (in preparation). Radiocarbon dating and integrative paleoecology (δ13C, stereomicrowear) of Eremotherium laurillardi (lund, 1842) from midwest region of the Brazilian Intertropical Region

Owen-Smith, N. 1982. Factors influencing the consumption of plant products by large herbivores. In: Huntley, B.J. and Walker, B.H eds. The ecology of tropical savannas. Springer- Verlag. Berlin, 359-404.

Pérez-Higareda, G.; Rangel-Rangel, A.; Smith, H.M.; Chiszar, D. 1989. Comments on the Food and Feeding Habits of Morelet's Crocodile. Copeia, 4:1039-1041.

Phillips, D.L. 2012. Converting isotope values to diet composition: the use of mixing models. J Mammal, 93(2):342–352. doi: 10.1644/11-MAMM-S-158.1

Porpino, K. de O.; Bergqvist, L.P. 2002. Novos achados de Panochthus (Mammalia, Cingulata, Glyptodontidae) no nordeste do Brasil. Rev Bras Paleontolog, 4:51-62.

Porpino, K. de O.; Fernicola, J.C.; Bergqvist, L.P. 2009. A new Cingulate (Mammalia: Xenarthra) Pachyarmatherium brasiliense sp. nov. from the late Pleistocene of northeastern Brazil. J Vert Paleontol, 29(3):881-893.

Prevosti, F.J.; Martin, F.M. 2013. Paleoecology of the mammalian predator guild of Southern Patagonia during the latest Pleistocene: Ecomorphology, stable isotopes, and taphonomy. Quat Int, 304, 74-84. doi: 10.1016/j.quaint.2012.12.039

Radloff, F.G.T.; Du Toit, J.T. 2004. Large predators and their prey in a southern African savanna: a predator’s size determines its prey size range. J Anim Ecol, 73, 410-423.

Ribeiro, R. da C.; Araújo-Júnior, H.I. de; Kinoshita, A.; Figueiredo, A.M.G.; Baffa, O.; Carvalho, I. de S. 2014. How much time is represented in the fossil record of tank deposits?. In: Simpósio Brasileiro de Paleontologia de Vertebrados, 9, 2014. Paleontologia em Destaque, 115.

Sergipe. Secretaria de Estado do Planejamento, da Ciência e da Tecnologia. 2011. Atlas digital sobre recursos hídricos Sergipe. Sergipe: SEPLANTEC/SRH. CD-ROM.

Silva, L.A. 2015. Paleoecologia alimentar dos gonfotérios (proboscidea: mammalia) pleistocênicos da América do Sul. Dissertação de Mestrado, Universidade Federal do Estado do Rio de Janeiro.

Tejada-Lara, J.V.; MacFadden, B.J.; Bermudez, L.; Rojas, G.; Salas-Gismondi, R.; Flynn, J.J. 2018. Body mass predicts isotope enrichment in herbivorous mammals. Proc. R. Soc. B, 285: 20181020. doi: 10.1098/rspb.2018.1020

Vizcaino, S.F.; Bargo, M.S.; Cassini, G.H. 2006. Dental occlusal surface area in relation to body mass, food habits and other biological features in fossil xenarthrans. Ameghiniana, 43(1), 11-26.

Vizcaíno, S.F.; De Iullis, G.; Bargo, M.S. 2008. Skull shape, masticatory apparatus, and diet of Vassalia and Holmesina (Mammalia: Xenarthra: Pampatheriidae): when anatomy constrains destiny. Journal of Mammalian Evolution, 5(4):291-322.

Vizcaíno, S.F.; Cassini, G.H.; Fernicola, J.C.; Bargo, M.S. 2011. Evaluating habitats and feeding habits through ecomorphological features in glyptodonts (Mammalia, Xenarthra). Ameghiniana, 48(3):305-319.

Yoneyama, T.; Ohtani, T. 1983. Variations of natural 13C abundances in leguminous plants. Plant & Cell Physiol, 24(6):971-977.



How to Cite

Dantas, M. A. T., Cherkinsky, A., Lessa, C. M. B., Santos, L. V., Cozzuol, M. A., Omena, Érica C., Silva, J. L. L., Sial, A. N., & Bocherens, H. (2020). Isotopic paleoecology (δ13C, δ18O) of a late Pleistocene vertebrate community from the Brazilian Intertropical Region. Revista Brasileira De Paleontologia, 23(2), 138-152.