

TRACE FOSSIL ANALYSIS IN THE MIOCENE PINDAMONHANGABA FORMATION, TAUBATÉ BASIN, BRAZIL

VICTÓRIA RAMIRO COELHO GOULART ,

MARCELLE TOSTES MANHÃES , CLAUDIO LIMEIRA MELLO ,

DANIEL CARVALHO WEST , LETHICIA CARLOS DA SILVA FERREIRA

Departamento de Geologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, Cidade
Universitária, Rio de Janeiro, RJ, Brazil.

vicgoulart.ramiro@gmail.com, marcelletostesm@gmail.com, limeira@geologia.ufrj.br, danielwest011@hotmail.com,
lethiciacarlosf@gmail.com

MARIANO VERDE

Departamento de Paleontología, Facultad de Ciencias, Universidad de la República, Programa de Desarrollo de las
Ciencias Básicas (PEDECIBA), Área Geociencias; Agencia Nacional de Investigación e Innovación; Sistema Nacional de
Investigadores (ANII-SNI). Iguá, 4225, CP. 11400, Montevideo, Uruguay.
verde@fcien.edu.uy

KIMBERLY SILVA RAMOS

Programa de Pós-Graduação em Ecologia e Recursos Naturais, Universidade Federal de São Carlos, Rodovia Washington Luiz
km 235, São Carlos, SP, Brazil
kimmysramos@gmail.com

DANIEL SEDORKO

Departamento de Geologia e Paleontologia, Museu Nacional, Universidade Federal do Rio de Janeiro, Av. Bartolomeu de
Gusmão, 875, São Cristóvão, Rio de Janeiro, RJ, Brazil.
sedorko@mn.ufrj.br (Corresponding author)

ABSTRACT – The Taubaté Basin comprises continental deposits formed within the central segment of the Continental Rift of Southeastern Brazil. The paleontological record of this basin is limited to the lacustrine deposits of the Tremembé Formation, with rare fossil evidence from other units. The Pindamonhangaba Formation, likely of Miocene age, was deposited in a meandering fluvial system during a post-rift phase. While its sedimentological and stratigraphic aspects are well-documented, trace fossils have not been described in this basin. Trace fossil analysis offers valuable insights into paleoenvironmental reconstructions, as they are generally preserved in situ and reflect the behavior of tracemakers, which is controlled by paleoecological parameters. Consequently, trace fossil studies are essential for interpreting paleoenvironmental conditions concurrent with or subsequent to sediment deposition. This study aims to characterize the ichnoassociations of the Pindamonhangaba Formation using a paleoecological approach. A 33-meter-thick section in Taubaté City, composed predominantly of mud-rich deposits with pedogenic features interbedded with sandy channel deposits, reveals diverse trace fossils. These include *Skolithos*, *Taenidium*, and *Palaeophycus* in sandstones; *Skolithos*, *Palaeophycus*, *Beaconites*, and *Vondrichnus* in pedogenized mudstones; and rhizoliths. The ichnological record reflects the dominance of *Scyenia* ichnofacies (composed of *Skolithos*, *Palaeophycus*, *Taenidium*, and *Beaconites*), indicating a transition from subaqueous to subaerial conditions, and a single level with of the *Termitichnus* ichnofacies (*Vondrichnus*, *Beaconites*), indicating a greater paleoecological stability in paleosols, likely influenced by lateral changes in depositional settings.

Keywords: *Scyenia* ichnofacies, *Termitichnus* ichnofacies, meandering river, *Taenidium*, *Vondrichnus*.

INTRODUCTION

Ichnology plays a crucial role in the reconstruction of paleoenvironments, as trace fossils are generally preserved in situ (Buatois & Mángano, 2011). This in situ preservation allows trace fossil analysis to reflect the depositional processes active during or immediately after sediment deposition (Sedorko & Francischini, 2020). Additionally, trace fossils are produced abundantly by soft-bodied organisms, which are rarely preserved as body fossils, thus providing a record of the fauna interacting with the substrate without the taphonomic biases related to

skeletal preservation (Bromley, 1996). Some continental or even marine units have their faunal composition solely known by the trace fossil content (e.g., Sedorko *et al.*, 2017, 2020, 2024).

Despite the extensive application of ichnology in sedimentological analyses, the majority of ichnological studies have focused on marine successions, which is also the case for the Brazilian basins. Ichnological studies on continental successions, however, have gained substantial improve worldwide (e.g., Hembree & Blair, 2016; Buatois *et al.*, 2020.; Srivastava *et al.*, 2024; Das *et al.*, 2025), which also have been crucial for understanding how the continental fauna responded to paleoenvironmental and

This is an Open Access article distributed under the terms of the Creative Commons Attribution license (<https://creativecommons.org/licenses/by/4.0/>), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

paleoclimatic changes (Genise, 2017; Ramos *et al.*, 2021, 2022; Nascimento *et al.*, 2022). In this context, ichnological information can serve as a valuable tool for refining sedimentological and stratigraphic interpretations.

The Taubaté Basin has been well-studied in terms of sedimentological and facies analysis (Suguió & Vespucci, 1985; Riccomini, 1989). Regarding the paleontological record of the basin, the lacustrine Tremembé Formation is rich in vertebrates, with brief mentions to simple burrows (Bergqvist & Ribeiro, 1998; Couto-Ribeiro *et al.*, 2005), while the meandering systems represented by the Pindamonhangaba Formation only have records of phytoliths (Praxedes *et al.*, 2010). Garcia *et al.* (2014) suggested a Miocene age for this unit, mostly based on stratigraphic correlations. There is a notable scarcity of ichnological studies regarding the Taubaté Basin, without any description of trace fossils for the Pindamonhangaba Formation. Therefore, this study aims to conduct an ichno-sedimentological analysis of the meandering deposits from the Pindamonhangaba Formation, providing paleodepositional and paleoenvironmental interpretations.

GEOLOGICAL SETTING

The Continental Rift of Southeastern Brazil (CRSB) is a regional structure that developed during the Paleogene, forming an elongated depression approximately 900 km long and up to 70 km wide between Tijucas do Sul (PR) and the vicinity of Macaé (RJ; Figure 1). The CRSB contains several basins: the Curitiba Basin (western segment), the São Paulo, Taubaté, Resende, and Volta Redonda basins (central segment), and the Macacu and Itaboraí basins. Although facies relationships and paleoenvironmental interpretations of these basins are well understood (*e.g.*, Amador, 1975; Amador & Castro, 1976; Melo *et al.*, 1985; Suguió & Vespucci, 1985; Riccomini, 1989; Ramos *et al.*, 2006; Negrão *et al.*, 2020), studies on ichnocoenoses are rare, being concentrated in Resende and Volta Redonda basins (*e.g.*, Fernandes *et al.*, 1992; Sedorko *et al.*, 2024, 2025), but with mentions to trace fossils in Tremembé Formation (Taubaté Basin; Bergqvist & Ribeiro, 1998).

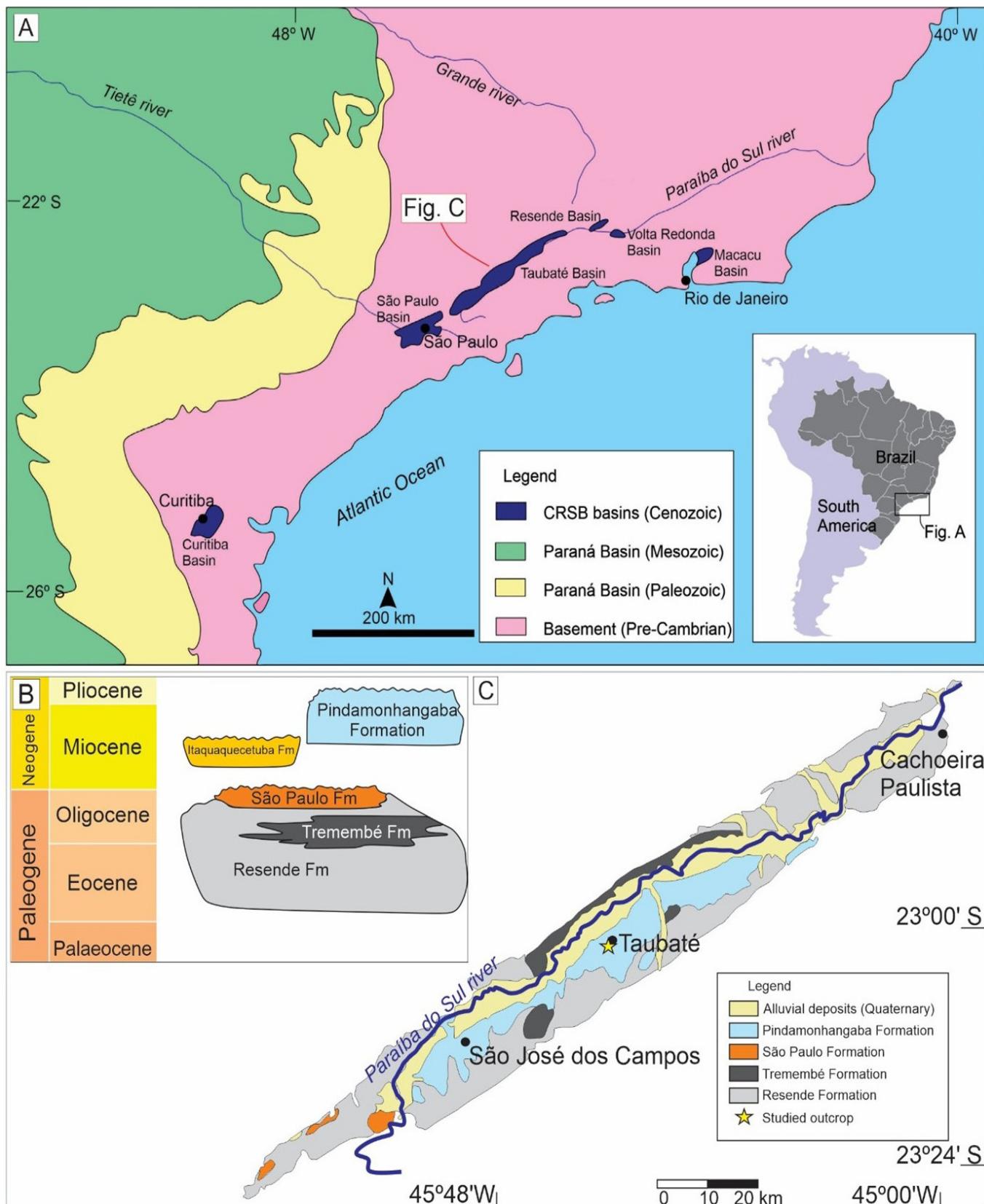
The Taubaté Basin comprises the Resende, Tremembé, São Paulo, Itaquaquecetuba, and Pindamonhangaba formations. The first three units, forming the Taubaté Group, are related to active rifting. The Resende Formation represents alluvial fan systems associated with braided rivers. The Tremembé Formation is characterized by an upward-deepening lacustrine setting. The São Paulo Formation is composed of meandering fluvial deposits. The Itaquaquecetuba Formation is represented by fluvial braided systems. The Pindamonhangaba Formation represents a post-rift meandering fluvial system (Riccomini, 1989; Carvalho *et al.*, 2011).

MATERIAL AND METHODS

In this study, sedimentary facies and trace fossils of the Pindamonhangaba Formation were analyzed in an outcrop

close to the Oswaldo Cruz Road at Taubaté Municipality, São Paulo State ($23^{\circ}3'32.54''$ S, $45^{\circ}33'28.84''$ W; WGS84). The facies analysis followed Miall (1996), focusing on the texture, geometry, composition, and primary sedimentary structures, along with a systematic survey of the ichnological attributes. The sedimentological section was measured and represented at a 1:20 scale to record detailed stratigraphic information, where each sedimentary layer was examined for *in situ* trace fossils.

Descriptions of the trace fossils adhered to ichnotaxonomic criteria established by Bromley (1996). The amount of bioturbation (AB) was assessed using a linear scale proposed by Knautz (2012), ranging from 1 (0–20%) to 5 (80–100%). The trace fossil types were identified and recorded to interpret ichnoassociations and paleoenvironmental conditions within the Pindamonhangaba Formation. Data collection included sedimentary facies characteristics, facies associations, and bioturbation features, providing a foundation for reconstructing depositional processes and paleoenvironments specific to this post-rift sequence.

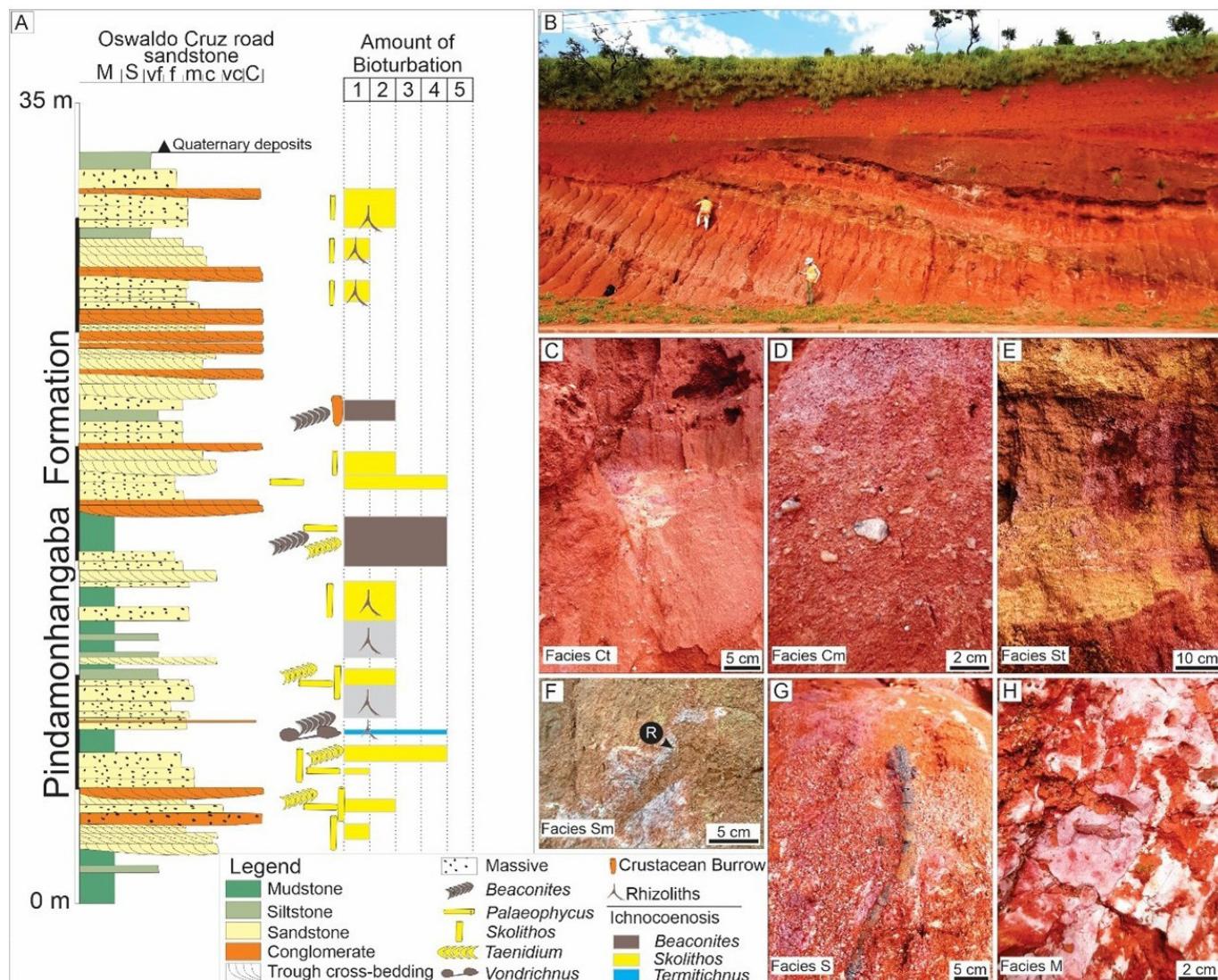

RESULTS

Facies and trace fossils

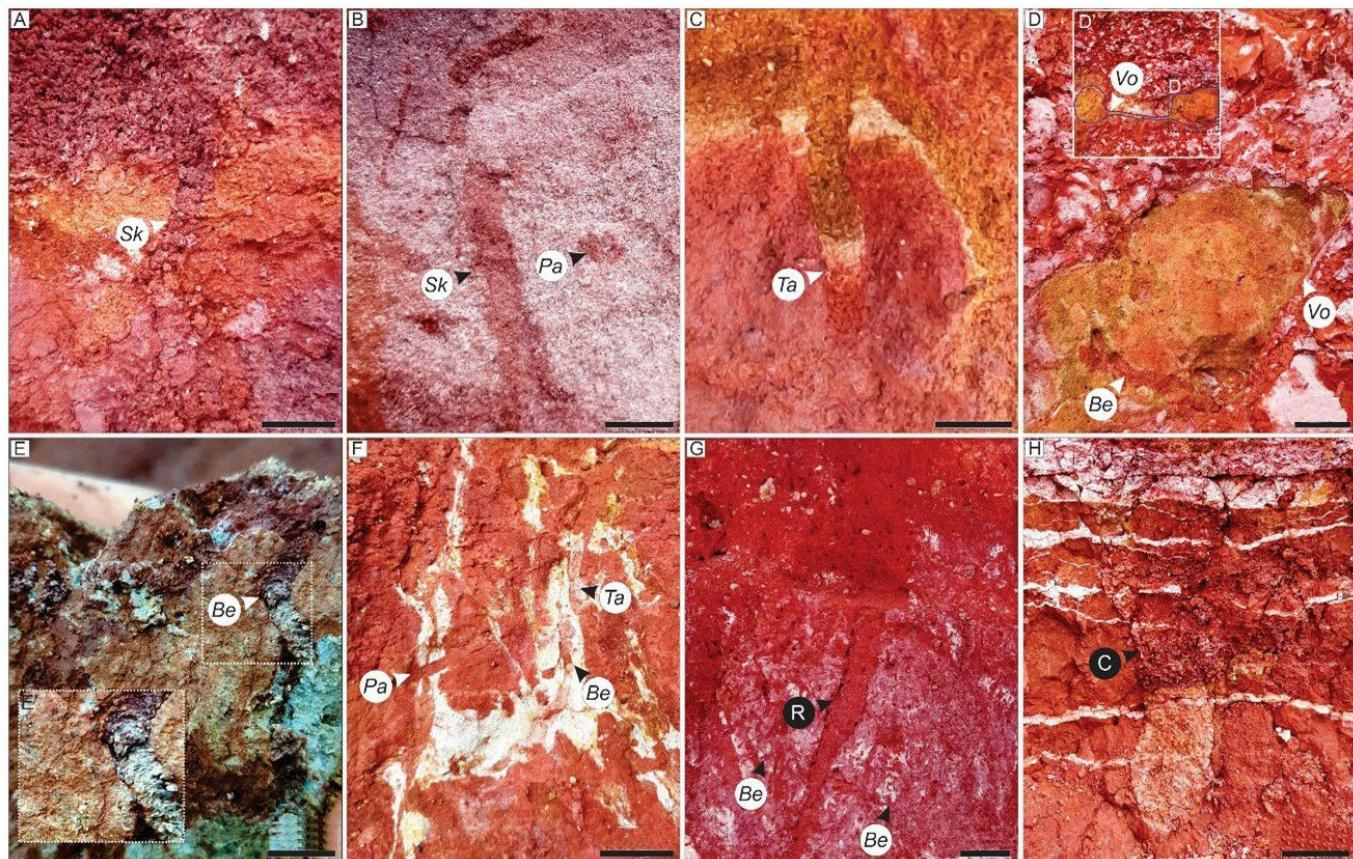
The studied outcrop (Figure 2; Table 1) is composed of pedogenized lutitic facies (facies S and M), that exhibits pedogenic features, interbedded with sandy deposits (facies Sm and St) and conglomeratic layers (facies Ct and Cm). The lower half of the sedimentary profile records fining upward successions with predominance of medium to coarse, stratified sandstones and conglomerates at the base overlapped by fine sandstones and bioturbated mudstones. The upper half of the profile exhibits coarse to medium-grained, stratified sandstones intercalated with stratified conglomerates, with rare lutitic layers, recording the sedimentation in the main channel.

The high bioturbation intensity prevents the ichnospecific identification. The sandy deposits (Sm and St facies) are characterized by the common occurrence of simple, passively filled, unbranched vertical trace fossils, predominantly attributed to *Skolithos* (Figure 3A). The simple, horizontal, unbranched traces with a discrete wall are attributed to *Palaeophycus* (Figure 3B). Subordinately, in the sandstone facies, the meniscated, unwalled burrows are identified as *Taenidium* (Figure 3C). Trace fossils in sandstone facies exhibit a range of colors, from dark red to white, and are often distinguished from the surrounding matrix by their well-defined walls.

The lutitic lithofacies (M and S facies) display a slightly greater ichnodiversity, featuring both vertical and horizontal trace fossils (*i.e.*, *Skolithos* and *Palaeophycus*), alongside other morphologies, mostly *Taenidium* and *Beaconites*. At a single level (~7.5 m of the section; Figure 2A) it occurs two oblate chambers interconnected by an unbranched burrow, exiting from one point on the periphery structure and filled by a structureless sediment, identified as *Vondrichnus* (Figure 3D).


Figure 1. Geological setting of the study area. **A**, geological map of the Continental Rift of Southeastern Brazil (CRSB) highlighting the Taubaté Basin. **B**, stratigraphic chart of the Taubaté Basin (Riccomini *et al.*, 2004). **C**, geological map of Taubaté Basin with the studied outcrop in the Pindamonhangaba Formation at Taubaté Municipality.

Most recurrent are meniscated trace fossils, reaching high bioturbation densities (AB = 4; Figure 2A). These traces are meniscated burrows with well-defined walls, identified as *Beaconites* (Figure 3E). At some levels, *Beaconites* occurs concentrated in rhizohaloes, with unwalled burrows identified as *Taenidium* and simple sub horizontal burrows identified as *Palaeophycus* (Figure 3F). Besides rhizohaloes (Figure 2F), rhizocretions (Figure 2G) and root casts (Figure 3G) are widely distributed throughout the section, particularly within the Sm, S, and M facies. *Beaconites* also occurs associated with a vertical, slightly sinuous, sub-circular, sharp-walled burrow, with 6 cm in diameter and 26 cm in length, with a slight enlargement in the direction of the rounded bottom. The filling is structureless and composed of poorly sorted coarse sand, distinct from the surrounding matrix.


Finally, conglomeratic facies (Ct and Cm) devoid of trace fossils were recorded, with a single exception at approximately 29 m in the section, where *Skolithos* was identified (Figure 2).

Ichnocoenoses

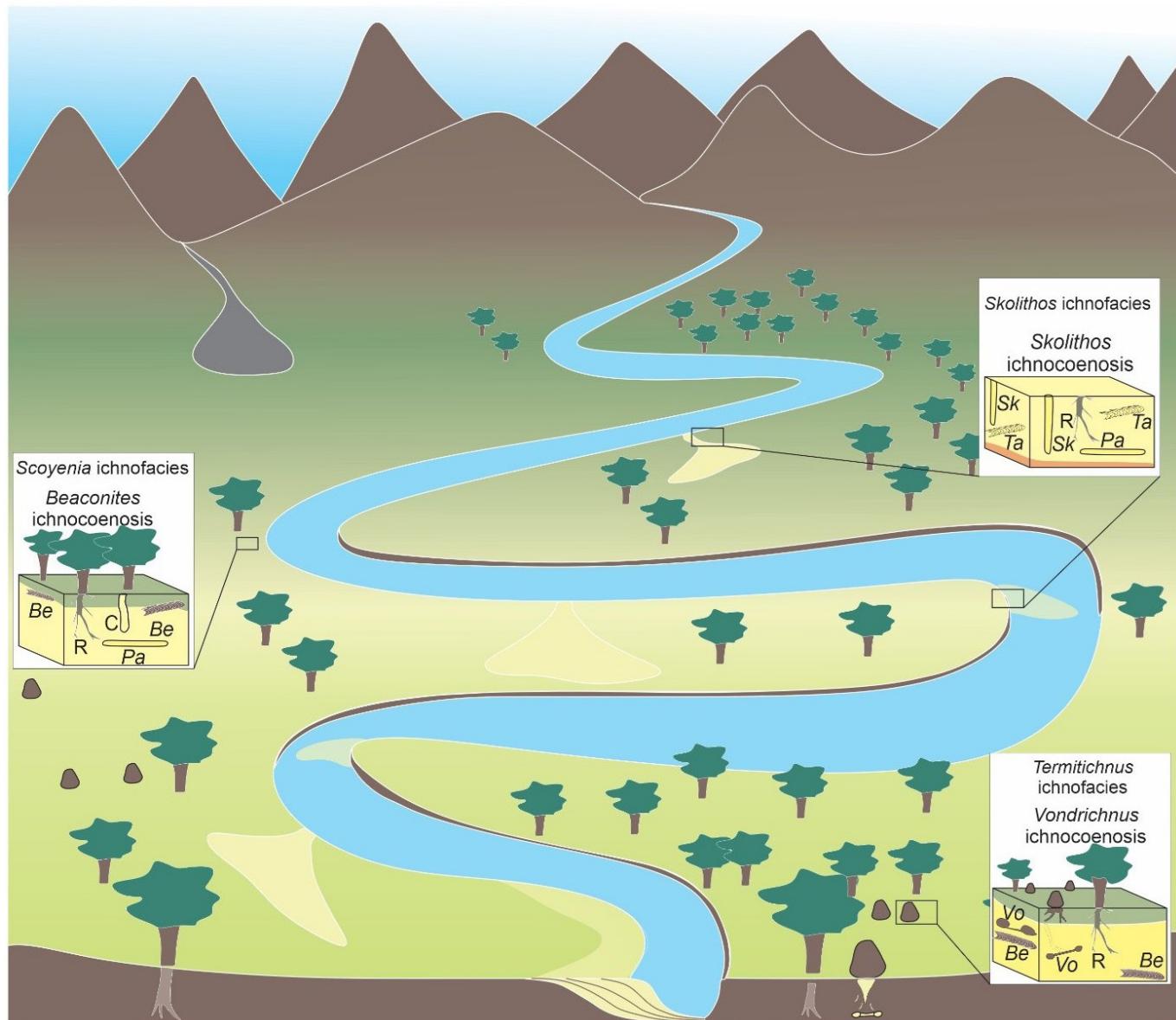
Based on the recurrence of ichnoassociations in the facies, three ichnocoenoses were identified. The *Skolithos* ichnocoenosis is the most recurrent and is characterized by the dominance of *Skolithos*, associated with *Palaeophycus*, with sparse occurrences of *Taenidium*. It occurs in sandstone or conglomeratic beds, rarely at lutitic levels. The *Beaconites* ichnocoenosis occurs in high densities (AB = 3–4) in lutitic intervals and sparsely in sandstones. *Palaeophycus*, *Taenidium*, and crustacean burrows (large burrows) are subordinate trace fossils. Finally, the *Vondrichnus* ichnocoenosis is dominated by *Vondrichnus* and

Figure 2. Sedimentological features of the outcrop studied of Pindamonhangaba Formation. **A.**, sedimentological log, levels with trace fossils and iats Amount of Bioturbation; light gray is highlighting levels with only rhizoliths. **B.**, general view of the studied outcrop; note the channel-cut and fill features in the middle-upper part of the outcrop. **C.**, conglomerate with trough cross-stratification (Facies Ct). **D.**, massive conglomerate (Facies Cm). **E.**, sandstone with trough cross-stratification (Facies St). **F.**, massive sandstone (Facies Sm); note the white rhizohaloes (R). **G.**, siltstone (Facies S), note the rhizocretion. **H.**, mudstone (Facies M).

Figure 3. Trace fossils of the outcrop studied of Pindamonhangaba Formation. **A–C**, *Skolithos*, *Palaeophycus*, and *Taenidium* in sandstone facies, characterizing the *Skolithos* ichnocoenosis. **D**, *Vondrichnus* and *Beaconites* in mudstone characterizing the *Vondrichnus* ichnocoenosis; observe the drawing of *Vondrichnus* in the highlighted box. **E–H**, *Beaconites*, *Palaeophycus*, *Taenidium*, and a crustacean burrow in lenticular facies (S and M facies) characterizing the *Beaconites* ichnocoenosis. **Abbreviations:** *Sk*, *Skolithos*; *Pa*, *Palaeophycus*; *Ta*, *Taenidium*; *Be*, *Beaconites*; *Vo*, *Vondrichnus*; *R*, *Rhizoliths*; *C*, Crustacean burrow. Scale bars: A–D, F = 20 mm; E = 10 mm; G–H = 50 mm.

Table 1. Facies and trace fossils from studied succession.

Code	Facies	Description	Trace fossils	Interpretation	Figure
Ct	Conglomerate with trough cross-stratification	Fine- to coarse-grained paraconglomerates with a dark red sandy matrix and a framework made up of quartz grains and lithoclasts, and through cross-stratification and a lenticular geometry	<i>Skolithos</i>	High-energy fluvial currents within a channel	2C
Cm	Massive Conglomerate	Fine- to coarse-grained conglomerates with a dark red sandy matrix and a framework made up of quartz grains and lithoclasts with tabular geometry	-	Fast deposition by high-energy currents within a channel	2D
St	Sandstone with cross-stratification	Fine- to very coarse-grained sandstone, yellow to red in color, with channeled cross-stratification and occasional clay intraclasts, and tabular to lenticular geometry	<i>Skolithos</i> , <i>Palaeophycus</i> , and <i>Taenidium</i>	Deposition by high-energy currents within a meandering river channel, with frequent erosion and reworking	2E
Sm	Massive sandstone	Very fine to very coarse sandstone, yellow, red, and off-white in color with a massive structure, and tabular to lenticular geometry	<i>Palaeophycus</i> , <i>Skolithos</i> , <i>Taenidium</i> , and <i>Rhizoliths</i>	Deposition by low- to moderate-energy fluvial currents within a channel	2F
S	Massive siltstone	Siltstone with a grayish color, and a massive structure and tabular geometry	<i>Beaconites</i> , <i>Taenidium</i> , <i>Palaeophycus</i> , <i>Skolithos</i> , and <i>Rhizoliths</i>	Deposition in a low-energy, overbank environment	2G
M	Massive mudstone	Mudstone with a gray, purple and red color, a massive structure and tabular geometry	<i>Beaconites</i> , <i>Taenidium</i> , <i>Palaeophycus</i> , <i>Skolithos</i> , <i>Vondrichnus</i> , and <i>Rhizoliths</i>	Deposition in a low-energy, floodplain environment	2H


Beaconites, with subordinated *Palaeophycus*, occurring in high density (AB = 4). Rhizoliths are present in small quantities at the base of the section and gradually increase in abundance above 10 m. They are best preserved and most prominent in the lutitic intervals, where they can occur as rhizocretions.

DISCUSSION

The facies are dominated by fine to medium-grained sandstones interbedded with massive and occasional laminated claystones and siltstones, with sporadic occurrences of conglomerates, and pebbly sandstones, which can contain intraclasts of clay and erosive contacts. The fine-grained deposits

suggest low-energy depositional conditions, such as overbank deposits (Nichols & Fisher, 2007). In contrast, the sandstones and conglomerates levels indicate more energetic conditions, likely linked to the disruption of marginal dykes and channels. This facies distribution is indicative of a meandering river system, as also described by Riccomini *et al.* (2004) for Pindamonhangaba Formation. This depositional scenario is further supported by the here reported trace fossils, as discussed below.

The presence of *Skolithos*, *Taenidium*, and *Palaeophycus* in sandstone facies, which define the *Skolithos* ichnocoenosis, indicates deposition under predominantly high-energy hydrodynamic conditions (Nascimento *et al.*, 2022; Sedorko *et al.*, 2024), such as within active channels or crevasse splays in a meandering fluvial system (Figure 4). Colonization in these

Figure 4. Inferred depositional scenario represented by the trace fossils in the meandering fluvial Pindamonhangaba Formation, Taubaté Basin. **Abbreviations:** *Be*, *Beaconites*; *C*, crustacean burrow; *Pa*, *Palaeophycus*; *R*, rhizoliths; *Sk*, *Skolithos*; *Ta*, *Taenidium*; *Vo*, *Vondrichnus*.

settings likely occurred during brief episodic intervals of reduced energy, allowing opportunistic organisms to settle on the substrate (Sedorko *et al.*, 2025). The limited bioturbation reflects rapid sediment accumulation, interrupted by short periods of stability (Savrda *et al.*, 2000; Buatois & Mángano, 2004). Additionally, *Taenidium* suggests phases of slower sedimentation, representing colonization of substrates in abandoned channels prior to subsequent high-energy flooding events (Nascimento *et al.*, 2022). Thus, *Skolithos* ichnocoenosis suggests colonization of sand bars, and local levels with *Taenidium* likely reflect colonization of exposed bars (Buatois *et al.*, 1998; Buatois & Mángano, 2007; Minter *et al.*, 2007).

The presence of insect-produced trace fossils, particularly *Vondrichnus*, provides evidence for paleosol development, as termite nests and galleries are typically constructed in sediments exposed to air, even in the absence of other pedogenic indicators (Genise, 2017). The association of rhizohaloes with the *Vondrichnus* layer further supports the interpretation of paleosol formation. The occurrence of *Beaconites* with well-defined walls suggests overall dry substrate conditions, reflecting colonization under subaerial exposure (Graham & Pollard, 1982). Termite-dominated trace fossil assemblages, such as those of the *Termitchnus* ichnofacies, are often linked to forested substrates in warm, humid climates (Grassé, 1986). However, termite nests also occur in non-forested tropical regions, including both humid and arid environments like the Pantanal (central-western Brazil), the Namib Desert (Namibia), and the subtropical grasslands of the Pampa in Rio Grande do Sul (Ramos *et al.*, 2021). Though less frequent, they are also observed in vegetated frontal dunes within the active rear zone of Lagoon-Barrier Systems IV, where water sources are accessible (Ramos *et al.*, 2021). Termites require moisture and vegetation for survival and adapt in arid regions by constructing horizontal tunnels near the surface to collect plant material and vertical tunnels to access deeper, moister soil (Ramos *et al.*, 2021). These nests indicate social behavior and larval care (Genise, 2017). Therefore, the presence of *Termitchnus* in the section reflects a prolonged period of non-deposition and suggests wetter, warmer conditions during the formation and colonization of these paleosols.

Similarly, lutitic levels with the *Beaconites* ichnocoenosis, including crustacean burrows and rhizoliths, reflect extended exposure and the development of paleosols (Figure 4). The local abundance of rhizoliths in these paleosols suggests periods of relatively high-water tables (Kraus & Hasiotis, 2006). Root decomposition contributes organic matter for soil development and serves as a significant food source for soil macrofauna, as evidenced by some levels with rhizohaloes being colonized by invertebrates (Figure 3F). The crustacean burrow attribution was based on the general morphology and dimensions. Considering that *Camborygma litonomos* has chambers and multiple shafts, *Capayanichnus* has an L-shape and distinctive surface ridges, and *Loloichnus* has a thick lining, it is classified simply as a crustacean burrow (Hasiotis & Mitchell, 1993; Bedatou *et al.*, 2008; Melchor *et al.*, 2010). This ichnocoenosis can be associated with the *Scyenia* ichnofacies (Buatois & Mángano, 2004, 2007).

CONCLUSIONS

The integration of ichnological and sedimentological data highlights the coexistence of three ichnofacies for the Pindamonhangaba Formation (Miocene, Taubaté Basin): *Skolithos*, *Termitchnus*, and *Scyenia* ichnofacies. The *Skolithos* ichnofacies is associated with high-energy channel or crevasse splay deposits, reflecting rapid sedimentation with brief colonization windows. The *Termitchnus* ichnofacies indicates prolonged subaerial exposure under warm and moist conditions, with episodes of soil stabilization and vegetation growth. Finally, the *Scyenia* ichnofacies, marked by *Beaconites*, rhizoliths, and crustacean burrows, represents a transitional environment with moderate energy, extended exposure, and paleosol formation in overbank settings.

The presence of the ichnogenus *Vondrichnus* provides an important record of social insect colonization in the RCB Basin during the Miocene. The integration of sedimentological and ichnological evidence corroborates a dynamic meandering fluvial system characterized by channel deposits (*Skolithos* ichnofacies), subaerially exposed paleosols with termite activity (*Termitchnus* ichnofacies), and transitional overbank environments (*Scyenia* ichnofacies). Future correlations with contemporaneous basins (Resende, Volta Redonda, and Curitiba basins) may provide a more comprehensive understanding of the Miocene paleoclimate.

DATA AVAILABILITY STATEMENT

The authors confirm that the data supporting the findings of this study are available within the article.

FUNDING

This study is a contribution to the project “Ichnologia das bacias de Resende e Taubaté no contexto do Rift Continental do Sudeste do Brasil” (Jovem Cientista do Nosso Estado – FAPERJ 281340 - 200.131/2023 - SEI-260003/000688/2023 - BBP). DS thanks the National Council for Scientific and Technological Development (CNPq) for the research grants (CNPq 306493/2022-5 process), and CAPES/Alexander von Humboldt-Stiftung for post-doc fellowship.

AUTHOR CONTRIBUTIONS

Victoria Ramiro Coelho Goulart, Mariano Verde, Marcelle Tostes Manhães, Claudio Limeira Mello, Daniel Carvalho West, Kimberly Silva Ramos, Lethicia Carlos da Silva Ferreira, Daniel Sedorko: writing – original draft, editing, investigation, formal analysis, data curation. Victoria Ramiro Coelho Goulart, Marcelle Tostes Manhães, Daniel Carvalho West, Lethicia Carlos da Silva Ferreira, Daniel Sedorko: visualization. Victoria Ramiro Coelho Goulart, Daniel Sedorko: writing – review, formal analysis, data curation, conceptualization. Daniel Sedorko: resources. All authors gave final approval for publication and agreed to be held accountable for the work performed therein.

DECLARATION OF AI USE

We have not used AI-assisted technologies to create, review, or any part of this article.

ETHICS

This work did not require ethical approval, collecting licenses, or previous authorizations.

CONFLICT OF INTEREST

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

REFERENCES

Amador, E.D.S. 1975. Estratigrafia e sedimentação na Bacia de Resende-RJ. *Anais da Academia Brasileira de Ciências*, **47**:181–223.

Amador, E.S. & Castro, M.I.B. 1976. Depósitos neocenozóicos da bacia de Volta Redonda, RJ. In: CONGRESSO BRASILEIRO DE GEOLOGIA, 1976, Ribeirão Preto, SBG, vol. 29, p. 307–327.

Bedatou, E.; Melchor, R.N.; Bellosi, E. & Genise, J.F. 2008. Crayfish burrows from Late Jurassic–Late Cretaceous continental deposits of Patagonia: Argentina. Their palaeoecological, palaeoclimatic and palaeobiogeographical significance. *Palaeogeography, Palaeoclimatology, Palaeoecology*, **257**:169–184. doi:10.1016/j.palaeo.2007.09.020

Bergqvist, L.P. & Ribeiro, A.M. 1998. *A paleomastofauna das bacias eoteríarias brasileiras e sua importância na datação das bacias de Itaboraí e Taubaté*. Buenos Aires, Asociación Paleontológica Argentina, p. 9–34 (Publicación especial, 5).

Bromley, R.G. 1996. *Trace Fossils: Biology, Taphonomy and Applications*. London, Chapman and Hall, 361 p. doi:10.1007/978-1-4899-2875-7

Buatois, L.A. & Mángano, M.G. 2004. Animal-substrate interactions in freshwater environments: applications of ichnology in facies and sequence stratigraphic analysis of fluvio-lacustrine successions. *Geological Society of London, Special Publication*, **228**:311–333. doi:10.1144/GSL.SP.2004.228.01.14

Buatois, L.A. & Mángano, M.G. 2007. Invertebrate ichnology of continental freshwater environments. In: W. Miller III (ed.) *Trace Fossils: Concepts, Problems, Prospects*. Amsterdam, Elsevier, p. 285–323. doi:10.1016/B978-044452949-7/50143-1

Buatois, L.A. & Mángano, M.G. 2011. *Ichnology: Organism-Substrate Interactions in Space and Time*. Cambridge, University Press, xii + 358 p.

Buatois, L.A.; Mángano, M.G.; Genise, J.F. & Taylor, T.N. 1998. The ichnologic record of the continental invertebrate invasion: evolutionary trends in environmental expansion, ecospace utilization, and behavioral complexity. *Palaios*, **13**:217–240. doi:10.2307/3515447

Buatois, L.A.; Wetzel, A. & Mángano, M.G. 2020. Trace-fossil suites and composite ichnofabrics from meandering fluvial systems: The Oligocene Lower Freshwater Molasse of Switzerland. *Palaeogeography, Palaeoclimatology, Palaeoecology*, **558**:109944. doi:10.1016/j.palaeo.2020.109944

Carvalho, A.M.A.; Vidal, A.C. & Kiang, C.H. 2011. Delimitação do embasamento da Bacia de Taubaté. *Geologia USP, Série Científica*, **11**:19–32. doi:10.5327/Z1519-874X2011000100002

Couto-Ribeiro, G.; Vieira, M.R. & Alvarenga, H. 2005. Marsupiais fósseis da Bacia de Taubaté, Formação Tremembé, Estado de São Paulo, Brasil. In: CONGRESSO LATINO-AMERICANO DE PALEONTOLOGIA DE VERTEBRADOS, 2, 2005. *Boletim de Resumos*, Rio de Janeiro, Museu Nacional/UFRJ, p. 19–20.

Das, M.; Dasgupta, S.; Singh, S.; Klunk, M.A. & D'souza, R. 2025. The *Camborygma* Ichnofacies in a high-resolution sequence-stratigraphic framework for the Eocene palustrine-alluvial depositional interval of the Kutch Basin, India. *Journal of Palaeogeography*, **14**:141–156. doi:10.1016/j.jop.2024.12.001

Fernandes, A.C.S.; Borghi, L.F. & Carvalho, I.S. 1992. Ichnofósseis de artrópodes na Formação Resende (Bacia de Resende, RJ). *Anais da Academia Brasileira de Ciências*, **63**:96–97.

Garcia, M.; Bernardes, M.; Caramés, A.; Dino, R.; Antonioli, L. & Bistrichi, C. 2014. Neogene Paleoclimatic Evolution in Paraná State and Southern Brazil based on Paleobotanical and Palynological data. In: I.S. Carvalho, M.J. Garcia, C.C. Lana & O. Strohschoen (eds.) *Paleontologia: Cenários de Vida – Paleoclimas*. Editora Interciência, Rio de Janeiro, p. 329–339.

Genise, J.F. 2017. *Ichnoentomology: Insect Traces in Soils and Paleosols*. Heidelberg Berlin, Springer. (Topics in Geobiology 37).

Graham, J.R. & Pollard, J.E. 1982. Occurrence of the trace fossil *Beaconites antarcticus* in the lower carboniferous fluvial rocks of county Mayo, Ireland. *Palaeogeography, Palaeoclimatology, Palaeoecology*, **38**:257–268. doi:10.1016/0031-0182(82)90006-2

Grassé, P. 1986. *Termitologia, Tome III: Anatomie, Physiologie, Biologie, Systématique des Termites*. Paris, Masson. 715 p.

Hasiotis, S.T. & Mitchell, C.E. 1993. A comparison of crayfish burrow morphologies: Triassic and Holocene fossil, paleo-and neichnological evidence, and the identification of their burrowing signatures. *Ichnos*, **2**:291–314. doi:10.1080/10420949309380104

Hembree, D.I. & Blair, M.G. 2016. A paleopedological and ichnological approach to interpreting spatial and temporal variability in Early Permian fluvial deposits of the lower Dunkard Group, West Virginia, USA. *Palaeogeography, Palaeoclimatology, Palaeoecology*, **454**:246–266.

Knaust, D. 2012. Trace-fossil systematics. In: D. Knaust & R. Bromley (eds.) *Trace Fossils as Indicators of Sedimentary Environments. Developments in Sedimentology*. USA, Elsevier, Vol. 64, p. 79–101. doi:10.1016/B978-0-444-53813-0.00003-4

Kraus, M.J. & Hasiotis, S.T. 2006. Significance of different modes of rhizolith preservation to interpreting paleoenvironmental and paleohydrologic settings: examples from Paleogene paleosols, Bighorn Basin, Wyoming, U.S.A. *Journal of Sedimentary Research*, **76**:633–646. doi:10.2110/jsr.2006.052

Melchor, R.N.; Genise, J.F.; Farina, J.L.; Sánchez, M.V.; Sarzetti, L. & Visconti, G. 2010. Large striated burrows from fluvial deposits of the Neogene Vinchina Formation, La Rioja, Argentina: a crab origin suggested by neichnology and sedimentology. *Palaeogeography, Palaeoclimatology, Palaeoecology*, **291**:400–418. doi:10.1016/j.palaeo.2010.03.010

Melo, M.S.; Riccomini, C.; Hasui, Y.; Almeida, F.F.M.C. & Armando, M. 1985. Geologia e evolução do sistema de bacias tafrogênicas continentais do sudeste do Brasil. *Revista Brasileira de Geociências*, **15**:193–201. doi:10.25249/0375-7536.1985193201

Miall, A.D. 1996. *The Geology of Fluvial Deposits: Sedimentary Facies, Basin Analysis and Petroleum Geology*. Heidelberg, Springer-Verlag Incorporation, 582 p.

Minter, N.J.; Krainer, K.; Lucas, S.G.; Braddy, S.J. & Hunt, A.P. 2007. Palaeoecology of an Early Permian playa lake trace fossil assemblage from Castle Peak, Texas, USA. *Palaeogeography, Palaeoclimatology, Palaeoecology*, **246**:390–423. doi:10.1016/j.palaeo.2006.10.009

Nascimento, D.L.; Netto, R.G.; Batezelli, A.; Ladeira, F.S. & Sedorko, D. 2022. *Taenidium barretti* ichnofabric and rainfall seasonality: insights into dryland suites of *Scyenia* ichnofacies. *Journal of Palaeogeography*, **12**:28–49. doi:10.1016/j.jop.2022.10.001

Negrão, A.P.; Mello, C.L.; Ramos, R.R.C.; Sanson, M.S.R.; Louro, V.H.A. & Bauli, P.G. 2020. Tectonosedimentary evolution of the Resende and Volta Redonda basins (Cenozoic, Central Segment of the Continental Rift of Southeastern Brazil). *Journal of South American Earth Sciences*, **104**:102789. doi:10.1016/j.jsames.2020.102789

Nichols, G.J. & Fisher, J.A. 2007. Processes, facies and architecture of fluvial distributary system deposits. *Sedimentary Geology*, **195**:75–90. doi:10.1016/j.sedgeo.2006.07.004

Praxedes, F.R.; Mandarim-de-Lacerda, A.F.; Cristalli, P.D.S.; Torello, F.D.F.; Rodriguez, J.Y.; Bernardes-de-Oliveira, M.E.C. & Fittipaldi, F.C. 2010. Fitofósseis da Formação Pindamonhangaba, Neógeno da Bacia terciária de Taubaté, Estado de São Paulo, Brasil. *Boletim do Instituto Geológico*, **18**:201.

Ramos, K.S.; Netto, R.G. & Sedorko, D. 2021. Termite nests in eolian backshore settings: An unusual record throughout the Quaternary in the Neotropical realm. *Palaeontologia Electronica*, **24**:a15. doi:10.26879/1146

Ramos, K.S.; Netto, R.G.; Sedorko, D. & Nascimento, D.L. 2022. Insect trace fossils as indicators of climatic conditions during the uppermost Pleistocene deposits in southern Brazilian Atlantic coast. *Quaternary Research*, **111**:1–12.

Ramos, R.R.C.; Mello, C.L. & Sanson, M.D.S.R. 2006. Revisão estratigráfica da bacia de Resende, Rift Continental do Sudeste do Brasil, Estado do Rio de Janeiro. *Geosciences = Geociências*, **25**:59–69.

Riccomini, C. 1989 *O Rift Continental do Sudeste do Brasil*. Programa de Pós-Graduação em Geologia Sedimentar, Universidade de São Paulo, Tese de doutoramento, 319 p.

Riccomini, C.; Santanna, L. & Ferrari, A. 2004. Evolução geológica do rift continental do sudeste do Brasil. In: V. Mantesso-Neto; A. Bartorelli; C.D.R. Carneiro & B.B. Brito-Neves (eds.) *Geologia do Continente Sul-Americano: Evolução da Obra de Fernando Flávio Marques de Almeida*. São Paulo, Ed. Beca, p. 383–405.

Savrda, C.E.; Blanton-Hooks, A.D.; Collier, J.W.; Drake, R.A.; Graves, R.L.; Hall, A.G. & Wood, H.A. 2000. *Taenidium* and associated ichnofossils in fluvial deposits, Cretaceous Tuscaloosa Formation, eastern Alabama, southeastern USA. *Ichnos*, **7**:227–242. doi:10.1080/10420940009380162

Sedorko, D. & Francischini, H. 2020 *Ichnologia: Interações entre Organismos e Substratos*. Curitiba, Editora CRV.

Sedorko, D.; Alessandretti, L.; Warren, L.V.; Verde, M.; Rangel, C.C.; Ramos, K.S. & Guimarães Netto, R. 2020. Trace fossils from the Upper Cretaceous Capacete Formation, Sanfranciscana Basin, Central Brazil. *Annales Societatis Geologorum Poloniae*, **90**: 247–260. doi:10.14241/asgp.2020.15

Sedorko, D.; Mello, C.L.; Ramos, R.R.C.; Batezelli, A.; Cambria, V.; Goulart, V.R.C. & Ramos, K.S. 2024. Ichnological analysis and paleoenvironmental inferences of Neogene meandering fluvial deposits in Continental Rift of Southeastern Brazil. *Brazilian Journal of Geology*, **54**:e20230043. doi:10.1590/2317-4889202420230043

Sedorko, D.; Guimarães Netto, R.; Savrda, C.E.; Assine, M.L. & Tognoli, F.M.W. 2017. Age and environmental constraints of Furnas Formation by trace fossil analysis: calibrating the Early Paleozoic Gondwana Realm in the Paraná Basin (Brazil). *Palaeogeography, Palaeoclimatology, Palaeoecology*, **487**:307–320. doi:10.1016/j.palaeo.2017.09.016

Sedorko, D.; West, D.C.; Nascimento, D.L.; Mello, C.L.; Ramos, R.R.C.; Ramos, K.S. & Scheffler, S.M. 2025. Trace fossil analysis in Paleogene braided river system from Volta Redonda Basin, Continental Rift of Southeastern Brazil. *Ichnos*, **32**:93–103. doi:10.1080/10420940.2025.2484525

Srivastava, A.; Dasgupta, S.; Chatterjee, K. & Das, M. 2024. Trace fossil evidence of an Early Miocene paleoseismic event and depositional regime change from the Kutch (Kachchh) Basin. *Journal of Palaeogeography*, **13**:165–180. doi:10.1016/j.jop.2023.10.004

Suguio, K. & Vespucci, J.B. 1985. Turbiditos lacustres da Bacia de Taubaté. *Atas*, 243–250.

Received: 17 February 2025. Accepted: 11 June 2025.

Associated editor: Rodrigo Horodyski
Editor-in-chief: Matias do Nascimento Ritter