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INTRODUCTION

A fundamental goal of many paleontological research 
programs is to produce phylogenies of extinct taxa, which 
show how fossil species are related to each other and to living 
taxa. Phylogenies are not merely an end in themselves, and in 
recent years there has been an increasing interest in applying 
phylogenetic analyses in paleobiological studies (Pennel & 
Harmon, 2013). For example, phylogenies have become 

essential tools for evaluating patterns of diversification 
through time, allowing better estimation of speciation and 
extinction rates (e.g. Quental & Marshall, 2010; Stadler, 
2013), and to test for phylogenetic patterns and correlated 
evolution between pairs of traits (Hunt, 2006; Hunt & Carrano, 
2010; Slater et al., 2012). In the later case, adding phylogeny 
is important for taking into account the non-independence 
among taxa (or phylogenetic autocorrelation) and, therefore, 
for controlling Type I error rates (Felsenstein, 1985; Hansen 
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ABSTRACT – Phylogenetic Eigenvector Regression (PVR) is a fl exible comparative method that allows testing several 
hypotheses on phylogenetic signal and correlated evolution among traits. Selected phylogenetic eigenvectors extracted from a 
phylogenetic distance matrix among taxa allow representing their phylogenetic relatedness in a raw-data form (i.e. instead of 
a distance matrix) and can then be used as explanatory variables in statistical models aiming to estimate phylogenetic signal or 
phylogenetically corrected correlations. Because of the growing use of PVR by paleobiologists in recent times, here the main 
theoretical/statistical basis of the method and the developments made in the 15 years after its original proposition are reviewed, 
highlighting further potential applications in paleobiology. For the fi rst time, a multivariate extension of the phylogenetic 
signal-representation curve for estimating phylogenetic signal is presented. Another innovation is to show how PVR can be 
used to assess morphological disparity in a phylogenetic context. A dataset of cranial morphology and function of 35 theropod 
dinosaur genera is used to illustrate the applications of PVR and how it can be used to answer four questions: (i) what are the 
phylogenetic patterns in theropod skull shape? (ii) is possible to tease apart the evolutionary models underlying variation in 
traits? (iii) how are evolutionary history, function, and diet related to variation in theropod skulls? (iv) what are the evolutionary 
components of morphological disparity in theropod skulls? Answering these questions provide a roadmap for using PVR to 
address a range of issues relevant to contemporary paleobiology research programs.
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RESUMO – A Análise de Regressão por Autovetores Filogenéticos (PVR) é um método comparativo fl exível que permite 
testar diversas hipóteses sobre sinal fi logenético e evolução correlacionada de caracteres. Autovetores extraídos da matriz 
de distâncias fi logenéticas representam a relação evolutiva entre os táxons de forma vetorial, sendo facilmente inseridos em 
análises de correlação ou modelos de regressão. Considerando o grande interesse recente de paleontólogos por essa abordagem, 
aqui foi revisado o PVR e apresentado os seus desenvolvimentos nos últimos 15 anos, com destaque para aplicações potenciais 
em paleobiologia. Apresenta-se, pela primeira vez, uma extensão multivariada de uma abordagem sequencial do PVR com 
o objetivo de avaliar modelos de evolução (a curva sinal-representação) e como os autovetores fi logenéticos podem ser 
utilizados para avaliar a evolução da disparidade morfológica. A aplicação das diferentes técnicas foi demonstrada com 
dados de evolução do crânio em dinossauros terópodes, respondendo a quatro questões básicas: (i) qual o sinal fi logenético 
na forma do crânio? (ii) é possível utilizar o PVR para avaliar os modelos de evolução relacionados a esse sinal? (iii) como a 
variação na história evolutiva, função e dieta estão relacionadas à variação na forma craniana? (iv) quais são os componentes 
evolutivos da disparidade no crânio dos terópodes? Ao responder a essas questões, é fornecido um roteiro sequencial de como 
o PVR pode ser aplicado para avaliar uma série de perguntas relevantes no programa de pesquisa atual em paleobiologia.

Palavras-chave: métodos comparativos, morfometria geométrica, autovetores fi logenéticos, Theropoda.
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& Martins 1996; Hansen et al., 2008). Statistically, this non-
independence generated by evolutionary dynamics of traits 
during diversifi cation creates phylogenetic autocorrelation of 
phenotypes among taxa, which is an unwelcome effect that 
may complicate our ability to understand patterns and rates 
of character evolution (Gittleman & Kot, 1990; Martins, 
1996; Diniz-Filho, 2001; Revell et al., 2008; see Blomberg 
& Garland, 2002 for a discussion on terminology). 

There are several statistical approaches to estimate 
phylogenetic autocorrelation (i.e. phylogenetic signal) and 
to control for this when testing the correlation between 
traits (see Pavoine et al., 2007; Pavoine & Ricota, 2012; 
Munkmuller et al., 2012; Hernandez et al., 2013 for recent 
reviews). In a regression context, two analytical frameworks 
have been used to model traits that are phylogenetically 
patterned (Martins & Hansen, 1997). First, variables 
representing patterns of phylogenetic relationships among 
the species can be incorporated as explanatory variables 
or as covariables (depending on the goals) in a standard 
Ordinary Linear Regression (OLS) model, resulting (ideally) 
in a model with independent and homoscedastic residuals 
(because phylogenetic structure was already incorporated in 
the model). Second, the residual covariance structure can be 
modifi ed to directly incorporate non-independence among 
taxa and describe their expected evolutionary relationships 
under a given evolutionary model (e.g. Brownian motion 
and Ornstein-Uhlenbeck) in a Phylogenetic Generalist Least-
Squares (PGLS) approach (Martins & Hansen, 1997). In 
PGLS, the regression parameters are thus estimated already 
assuming the phylogenetic patterns in residual variation, 
whereas in OLS the variation among species is assumed to 
be independent.

Allowing for “phylogenetic” variables (i.e. the first 
framework) to study trait variation throughout a phylogeny 
or correlated evolution, in turn, can be achieved by different 
strategies. Considering a cross-species dataset with a trait as a 
response variable, one strategy is to extract eigenvectors from 
a phylogenetic distance matrix using a Principal Coordinate 
Analysis (see Legendre & Legendre, 2012; Bookstein, 2013; 
see also Ollier et al., 2006) and, subsequently, incorporate 
some of the eigenvectors as explanatory variables that express 
the phylogenetic relationships among species or genera (see 
Diniz-Filho et al., 1998, 2012a,b; Desdevises et al., 2003; 
Peres-Neto, 2006; Kuhn et al., 2009; Peres-Neto et al., 2012 
- see also Borcard & Legendre, 2002; Griffi th & Peres-Neto, 
2006; Dray et al., 2006; Bini et al., 2009 for the use of this 
approach in a spatial context). In general, this approach has 
been called eigenfunction (spatial or phylogenetic) analysis 
(see Peres-Neto & Legendre, 2010; Peres-Neto et al., 2012)

The strategy of regressing a trait on phylogenetic 
eigenvectors was originally proposed by Diniz-Filho 
et al. (1998) and was called Phylogenetic EigenVector 
Regression (PVR). The PVR can be used both to estimate 
the phylogenetic signal in a dataset (i.e. the coeffi cient of 
determination R2 of the linear model of a trait regressed 
against the phylogenetic eigenvectors) and to study correlated 
evolution between multiple traits. For this last task, one can 

estimate a correlation between PVR residuals of two traits 
(for a similar reasoning, see Cheverud et al., 1985; Gittleman 
& Kot, 1990) or add phylogenetic eigenvectors and other 
explanatory variables into a multiple or partial regression 
model (Desdevises et al., 2003; Peres-Neto et al., 2012). More 
recently, PVR approach started to be used to infer trait values 
(for species for which these values are unknown) based on 
their phylogenetic position, a procedure called phylogenetic 
imputation (Guenard et al., 2013; Swenson, 2014). 

However, despite numerous empirical applications, 
the PVR approach (as well as its analogous spatial forms) 
has been criticized on several grounds, especially when its 
statistical performance is compared with other methods, 
such as PGLS (see Monteiro, 2013 for a recent review in 
the context of geometric morphometrics), or because it is 
usually described as a purely empirical approach, not relying 
on explicit models of trait evolution (e.g. Laurin, 2010; 
Freckleton et al., 2011; Pennell & Harmon, 2013). Moreover, 
Rohlf (2001) pointed out that, because all eigenvectors would 
be necessary to describe the entirety of the phylogenetic 
relationships expressed by the distance matrix, selecting a 
few of them to model trait variation (a common procedure in 
any multivariate analyses) would lead to a underestimation 
of phylogenetic signal and to a high type I error rate when 
correlating traits. 

Despite these criticisms, PVR is valid in empirical 
applications if model assumptions are not violated. For 
instance, a careful selection of phylogenetic eigenvectors, 
especially taking the residual phylogenetic autocorrelation 
into account, leads to accurate estimates of phylogenetic signal 
and satisfactory Type I error rates (Diniz-Filho et al., 2012b). 
At the same time, the possibility of selecting eigenvectors that 
are structured across different parts of the phylogeny allows 
modeling more complex patterns that are not easily described 
by a single model across the entire phylogeny of a group. 
This is clear in the new extension of PVR, which consists in 
successively adding phylogenetic eigenvectors as explanatory 
variables to model trait variation. The relationship between 
the R2 values of the successive PVR models (each one with 
an increased number of phylogenetic eigenvectors) and the 
cumulative eigenvalues (associated with the eigenvectors 
entering the models) exhibits different patterns under different 
evolutionary models. For instance, this relationship, called 
Phylogenetic Signal-Representation (PSR) curve, would be 
linear under a Brownian model of trait evolution (Diniz-Filho 
et al., 2012a). Departures from linearity in the PSR curve 
can be straightforwardly associated with other evolutionary 
models. This extension gives PVR an explicit interpretation 
in terms of evolutionary models underlying trait variation and, 
at the same time, allows choosing eigenvectors for further 
linear modeling.

Over the past decade, PVR has been frequently used in 
paleobiological research (e.g. Cubo et al., 2005, 2008, 2012; 
Spocter & Manger, 2007; Kriloff et al., 2008; Pouydebat et 
al., 2008; Pierce et al., 2009; Piras et al., 2010; Sakamoto 
et al., 2010; Brusatte et al., 2012; Close & Rayfi eld, 2012; 
Ercoli et al., 2012; Prevosti et al., 2012; Sakamoto & Ruta, 
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2012; Legendre et al., 2013). Given the considerable usage 
of PVR by paleobiologists, here the main theoretical/
statistical basis of the method and the developments made 
in the 15 years after its original proposition are reviewed, 
highlighting further potential applications in paleobiology. 
Understanding the basis of the PVR method and how to meet 
its assumptions is crucial for the correct application of the 
method. As an example of the application of the PVR model 
and its variations, an exemplar dataset of proxies for cranial 
form and function in theropod dinosaurs is used, which was 
originally presented by Brusatte et al. (2012). Using this 
dataset, the following specifi c questions are asked: (i) what 
are the phylogenetic patterns in theropod skull shape?; (ii) 
how can PVR help us tease apart the evolutionary models 
underlying variation in traits?; (iii) how are evolutionary 
history, function, and diet related to variation in theropod 
skulls?; and (iv) how can PVR be used to understand the 
evolutionary components of morphological disparity in 
theropod skulls? By addressing these questions, a step-wise 
guide for how PVR can be implemented (see Appendix 1) is 
provided, and used to address a range of issues pertinent to 
contemporary paleobiology research programs.

THE BASIC PVR MODEL

The PVR Model
The general idea of PVR is to model the variation in 

a trait (Y) as a function of eigenvectors extracted from a 
phylogenetic distance matrix (usually patristic distances, 
D hereafter), using a Principal Coordinate Analysis (PCOA 
– see Legendre & Legendre, 2012; Bookstein, 2013). The 
general goal of a PCOA is to transform a distance matrix into a 
series of vectors with coordinates that describe the relationship 
among observations (i.e. taxa in the phylogenetic context) in 
a continuous orthogonal space. Plotting these vectors allow 
a graphical inspection of the relationships expressed in the 
distance matrix. More specifi cally, these coordinates are the 
eigenvectors (E) resulting from the characteristic equation of 
a double-centered distance matrix (see Legendre & Legendre 
2012, p. 426). Therefore, if the distances are phylogenetic 
(patristic), the eigenvectors from D (previously transformed) 
will ordinate the taxa in a phylogenetic space, in which each of 
the n-1 eigenvectors (where n is the number of taxa) express 
a different component of variation among taxa based on the 
phylogenetic distances between them (see below). 

After selecting some of the eigenvectors (E), the PVR 
of a trait Y is given by a linear multiple regression model 
of the form:

Y = E+

where β is a vector containing the partial regression 
coefficients and ε are the residuals. The coefficient of 
determination (R2) of this model indicates the proportion of 
variation in Y that is “explained” by the part of the phylogeny 
that is being represented by the set of eigenvectors used, being 
thus an estimate of the phylogenetic signal. 

The PVR model defi ned above can be understood under 
the reasoning originally proposed by Cheverud et al. (1985), 
in which the total variation (T) in a trait Y can be partitioned 
into phylogenetic (P) and specifi c components (S), containing 
variance in the trait that is accounted for by phylogenetic 
relationships and the variance that is independent of the 
phylogenetic relationships between taxa, respectively. 
The P-component is given by the estimated values of the 
regression (Y’), whereas the S-component is given by the 
model residuals [ε = (Y – Y’)]. Diniz-Filho et al. (2009) 
showed that the S-component is correlated with the difference 
between the observed and ancestral reconstructed values for 
the trait, strengthening its interpretation as phylogenetically-
independent variance. 

PVR is thus a multivariate ordination of phylogenies 
coupled with linear modeling. It can be implemented in any 
standard package for statistical and multivariate analyses and 
in several R packages (R Development Core Team 2012), 
including the specifi c package PVR. Other related functions 
can be implemented using packages ape (Paradis 2012) and 
vegan (Borcard et al., 2011) (see also Appendix 1 for some 
R-script useful for helping PVR implementation).

Testing PVR Assumptions
It is assumed that the S-component is normally and 

independently distributed. Absence of phylogenetic 
autocorrelation in the residuals is critical for the validity of the 
PVR partition. This assumption can be tested by estimating 
Moran’s I autocorrelation coeffi cients (Gittleman & Kot, 
1990). Moran’s I can then be used to estimate phylogenetic 
signal both in traits and model residuals (see Diniz-Filho, 
2001; Pavoine et al., 2007; Munkmuller et al., 2012), and 
is given by:

where n is the number of species, yi and yj are the trait values 
in the vector Y (or the elements of the residual vector ) for 
the species i and j (with average y–), and wij are the elements 
of the weighting matrix W. Matrix W expresses the pairwise 
phylogenetic relationship between species, that can be given 
by 1 –D (and if W is standardized to vary between 0 and 1, 
it becomes a “phylogenetic correlation” matrix, expressing 
the shared proportion of branch lengths from the root of the 
tree). Thus, values of Moran’s I closer to 1.0 indicate that 
phylogenetically related species (i.e. close relatives, with 
high values for W) are more similar for trait Y (or residuals 
) than randomly chosen pairs of species, whereas the 
null expectation is given by (n-1)-1. Differences from null 
expectation can be tested by Monte Carlo methods, especially 
for small (i.e. n < 25) sample sizes. For a given trait Y, a high 
value of Moran’s I indicates thus a strong phylogenetic signal. 
However, statistical independence of the S-component (i.e. 
PVR residuals) is supported when Moran’s I is close to zero, 



108 REVISTA BRASILEIRA DE PALEONTOLOGIA, 17(2), 2014

indicating that, after applying PVR to partition trait variation, 
there is no phylogenetic structure in model residuals (i.e. 
residuals are independent).

It is common to estimate several Moran’s I coeffi cients for 
a single variable, after partitioning the matrix D into several 
connection matrices W1, W2,W3, …Wk whose values (0 or 1) 
depend on the level of phylogenetic relatedness between pairs 
of taxa considering a given interval of phylogenetic distance 
(Gittleman & Kot, 1990; Diniz-Filho, 2001). A value of 1 is 
attributed to pairs of taxa within a given phylogenetic distance 
class, otherwise a value o zero is attributed. Plotting Moran’s 
I against the mid-point of the k distance class intervals 
forms a phylogenetic correlogram, indicating the distance at 
which phylogenetic signal can be detected and allowing the 
evaluation of more complex phylogenetic patterns in data.

An Application
For an initial illustration of the PVR model the data from 

Brusatte et al. (2012), a study of theropod dinosaur evolution 
that uses geometric morphometrics to quantify proxies for 
cranial skull shape variation and quantitative metrics of 
biting behavior to encapsulate cranial functional variation, 
is used. A comparative analyses was started by evaluating 
the phylogenetic signal in the fi rst two principal components 
(GEOM1 and GEOM2 hereafter) from a morphometric 
analysis based on 13 two-dimensional skull landmarks for 35 
theropod genera (see Brusatte et al., 2012 for details). These 
fi rst two principal components account for approximately 
73.4% of the total morphometric variation in the skulls. As 
discussed by Brusatte et al. (2012, p. 369), the fi rst principal 
component (GEOM1) refl ects an anteroposterior shortening 
of the skull, a dorsoventral deepening of the snout and 
reorientation of the long axis of the naris from a horizontal to 
an oblique orientation. Variations along the second principal 
component (GEOM2) refl ect a reduction in the area of the 
orbit, the development of a proportionally taller and shorter 
orbit and a deepening of the cheek region.

To analyze phylogenetic signal in the geometric 
morphometric data, eigenvectors of geometric morphometric 
data were extracted using the phylogeny of theropod dinosaurs 
that was utilized by Brusatte et al. (2012). This is an “informal” 
consensus tree showing the relationships of the 35 taxa based 
on a number of recent phylogenetic analyses (see Brusatte et 
al., 2012 for further details). Branches of the phylogeny were 
time-calibrated using the approach proposed by Brusatte et 
al. (2008), utilizing code developed by Graeme Lloyd (see 
http://www.graemetlloyd.com/methdpf.html) (Figure 1). A 
total of 34 phylogenetic eigenvectors were extracted from 
the phylogenetic distance matrix via PCOA, out of which the 
fi rst three and the fi rst 24 eigenvectors represented 48.97% 
and 95% of the structure of the phylogenetic distance matrix, 
respectively (Figure 2). Notice that when performing the 
PCOA the phylogenetic distances were not squared (see the 
section below about the PSR curve for more detail). 

The meaning of the phylogenetic eigenvectors can be 
straightforwardly understood by overlaying their values 
(i.e. the scores from the PCOA) on the phylogeny to see 

which group of taxa each one describes and differentiates 
(Figure 1). The eigenvectors with the largest eigenvalues 
will differentiate basal clades or taxa. For example, the fi rst 
eigenvector (PHY1 hereafter) portrays the difference between 
the most phylogenetically distant taxa on the tree, with 
positive high values for the derived Gallimimus-Velociraptor 
clade, and high negative values for the paraphyletic array of 
basal lineages, from Herrerasaurus to Majungasaurus (and 
with intermediate values for the other taxa) (Figure 1). The 
second eigenvector (PHY2), on the other hand, separates the 
Tarbosaurus-Dilong clade (the tyrannosauroid theropods) 
from other taxa. The third eigenvector (PHY3) divides the 
basal taxa in the Herrerasaurus to Majungasaurus zone 
into two groups: the paraphyletic array of basal lineages 
(Herrerasaurus to ‘Syntarsus’) and the clade Limusaurus to 
Majungasaurus (the ceratosaurian theropods). The following 
eigenvectors (i.e. PHY4 onwards) will progressively describe 
less inclusive sets of taxon relationships nearer and nearer to 
the tips of the phylogeny.

Moran’s I correlograms based on fi ve distance classes 
with intervals defi ned with constant time-steps throughout the 
phylogeny were initially obtained for GEOM1 and GEOM2. 
This number and range of distance classes is someway 
arbitrary and robustness of correlogram in respect to number 
of classes will depend of shape of the phylogeny and number 
of species/taxa (see Diniz-Filho, 2001). A rule of thumb in 
spatial analysis is to have no more than fi ve classes for 20-30 
species. For both GEOM1 and GEOM2, there is high (i.e. 
around 0.4), positive, and signifi cant autocorrelation in short 
phylogenetic distances, so that closely related taxa tend to 
be morphologically similar (Figure 3). This morphological 
similarity decreases as phylogenetic distances increase, 
and tends to stabilize when distances increase to about 120 
million years (for GEOM1) and to about 200 million years 
(for GEOM2).

PVR was applied by regressing GEOM1 and GEOM2 
against the fi rst three eigenvectors PHY1, PHY2 and PHY3 
(see Figure 1). The R2 of the multiple regression model for 
GEOM1 was equal to 0.258 (F = 3.56; p = 0.024), with 
a signifi cant partial regression coeffi cient for PHY3. For 
GEOM2, the coeffi cient of determination (R2) was equal 
to 0.462 (F= 8.87; p < 0.001) and the partial regression 
coeffi cients associated to PHY1, PHY2 and PHY3 were all 
signifi cant. Thus, both traits are phylogenetically structured 
(i.e. exhibit a significant phylogenetic signal), although 
patterns in GEOM2 are stronger than in GEOM1. This is 
also observed in the correlograms because, when compared 
to GEOM1, high Moran’s I coeffi cients are detected for a 
larger phylogenetic distance (up to 200 million years) for 
GEOM2 (Figure 3).

Moreover, after using PVR to partition the total variation 
T into P and S components, there is still signifi cant residual 
autocorrelation in the fi rst distance class (I = 0.27; p = 0.032 
for GEOM1; Figures 3A,B). Thus, the results indicate that 
these PVR models were not able to completely take phylogeny 
into account. With this exercise, our goal here was to show 
that more eigenvectors are needed to better model these two 
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traits and to take the residual autocorrelation into account. 
For example, including the fi rst 10 eigenvectors increase the 
R2 of GEOM1 from 0.258 to 0.888, removing positive and 
signifi cant autocorrelation from the residuals (in fact, it tends 
to create a negative autocorrelation in the fi rst distance class 
of PVR residuals, equal to I = -0.36; p = 0.017) (Figure 4).

These fi rst results are in line with Rohlf’s (2001) criticisms, 
because both the amount of phylogenetic signal (the R2) and 
the S-component (or residuals ε) given by PVR will depend 
on how many (and which) eigenvectors are used. Thus, it is 
necessary to establish criteria to defi ne which eigenvectors 
should be used in PVR, an issue that is rarely discussed, 
despite its importance (see Blanchet et al., 2008; Bini et al., 
2009; Safi  & Pettorelli, 2010; Diniz-Filho et al., 2012b).

THE ISSUE OF EIGENVECTOR SELECTION

Criteria to select eigenvectors should be goal-oriented. If 
the goal is to estimate phylogenetic signal, the critical issue 
is that residuals (the S-component) are independent (i.e. 
without signifi cant phylogenetic autocorrelation) and, as 

Figure 1. Phylogeny and the first three eigenvectors (PHY1, PHY2 and PHY3) for the 35 Theropoda genera.

Figure 2. Scree plot of eigenvalues extracted from the phylogenetic 
distance matrix, as well as broken-stick expectation (comparing the 
two curves allow defining that five eigenvectors should be used in 
PVR, according to this criterion).
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explained above, this is a testable assumption using Moran’s 
I as a diagnostic tool. If residuals are independent, then the 
S-component contains the unique variation of a trait, and its 
correlation with other S-components or other variables (such 
as environmental variation, temperature, ecology, etc.) will 
be due to responses of taxa independently of ancestral states 
(see Diniz-Filho et al., 2009).

Methods to select eigenvectors can be divided into 
sequential and non-sequential criteria (Diniz-Filho et al., 
2012b). In the sequential criteria, eigenvectors are added 
one-by-one to the PVR model until elimination of the residual 
autocorrelation. Using GEOM1 as an example, the Moran’s 
I coeffi cient in the fi rst distance class for the S-component 
is not signifi cant after adding the fi rst four eigenvectors to 

the PVR model. With the increase of eigenvectors, Moran’s 
I coeffi cients become increasingly negative and signifi cant 
(indicating over-correction) (Figure 4). Thus, according to this 
sequential approach, GEOM1 should be modeled with the fi rst 
4 eigenvectors, revealing a much stronger phylogenetic signal 
(R2= 0.831) in comparison with the result shown above (R2= 
0.258), which was obtained with the fi rst 3 eigenvectors only.

Other criteria, including the non-sequential ones, 
could also be used, and results will vary in terms of R2 and 
autocorrelation in the S-component (Table 1). For example, 
it is common in multivariate analyses to use the ordination 
axes that cumulatively explain a certain (subjective) threshold 
value of a large amount of variation (e.g. 90%). Using the 
theropod data, 24 eigenvectors should be used in the PVR 
according to this criterion, resulting in a phylogenetic signal 
(R2) of 92%. However, this model strongly overcorrects for 
phylogeny and possesses a high negative autocorrelation in 
the fi rst distance class (Moran’s I = -0.46; p = 0.01). Thus, 
as indicated above, a much simpler model, including the fi rst 
four eigenvectors, would suffi ce to correct for autocorrelation. 
One alternative would be the broken-stick criterion for 
selecting which eigenvectors are signifi cantly different from 
null expectation (as originally proposed by Diniz-Filho et 
al., 1998; see also Legendre & Legendre, 2012). Based on 
this criterion only the fi rst 5 eigenvectors should be used (see 
Figure 2), with a similarly high phylogenetic signal but a low 
residual autocorrelation (Moran’s I = -0.19; p = 0.05).

Other non-sequential criteria can also be used (Table 1; 
see Diniz-Filho et al. 2012b for a discussion). First, one 
can use in the PVR model only the eigenvectors that are 
significantly correlated (using a Pearson’s correlation 
coeffi cient or partial the regression coeffi cients) with the trait 
of interest. When this criterion is applied to model GEOM1, 
the fi rst four eigenvectors should be used, coinciding in this 
case with the sequential criterion that minimizes the Moran’s 
I coefficient presented above. Second, an information-

Figure 3. Moran’s I correlogram for GEOM1 (A) and GEOM2 (B). The continuous (filled circles) and dashed (empty circles) lines represent, 
respectively, the results for the original variables and for the residuals from PVR models using the first three eigenvectors shown in Figure 1A.

Figure 4. Residual autocorrelation analysis from PVR models as the 
number of eigenvectors used to model GEOM1 increases.

A B
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theoretic approach can be used by searching all possible 
combinations of eigenvectors (see Diniz-Filho et al., 2008). In 
this case, because of the very high number of possible models 
incorporating the 34 eigenvectors, the search was restricted 
to the combinations of the fi rst ten eigenvectors. In this case, 
the model would retain the fi rst 7 eigenvectors, excluding 
eigenvector 6, for GEOM1. Finally, it is possible to use a 
procedure that automatically searches for the PVR model 
with the smallest number of eigenvectors and simultaneously 
minimizes Moran’s I coeffi cients of the residuals (see Diniz-
Filho et al., 2012b for details). This last option selects again 
the fi rst four eigenvectors, but excludes the fi rst eigenvector.

Despite variation in the results (Table 1), a key issue here 
is to defi ne a parsimonious model with independent residuals. 
Paradoxically, selection based on the information theoretic 
approach tended to overcorrect for residual autocorrelation 
probably because the Akaike information criterion may itself 
be biased by phylogenetic autocorrelation (Diniz-Filho et al., 
2008). Minimization of phylogenetic autocorrelation of the 
residuals, albeit interesting, involves some subjectivity (the 
choice of a threshold; e.g. a Moran’s I coeffi cient of 0.05). In 
general, the non-sequential approaches seem to be more useful 
(but see below), especially the one selecting the eigenvectors 
signifi cantly correlated with the response variable. This is so 
because the eigenvectors selected by these approaches are 
representing parts of phylogeny that are indeed important to 
model trait evolution and diversifi cation. Other possibility is 
to try several approaches (as shown in Table 1) and critically 
interpret resulting PVR models, checking for robustness in 
ecological or evolutionary conclusions. 

For the following analyses in this paper, when necessary, 
eigenvectors were selected according to their correlation with 
the response variables (GEOM1 and GEOM2). 

PHYLOGENETIC EIGENVECTORS 
AND EVOLUTIONARY MODELS

The Phylogenetic Signal-Representation (PSR) Curve
The idea of phylogenetic signal has recently been 

associated with evolutionary models and it may be interesting 
to defi ne the amount of variation in a trait explained by 
phylogeny under a given evolutionary model (see Freckleton 
et al., 2002; Blomberg et al., 2003; Cooper et al., 2010). In 
a fi rst instance, it would be diffi cult to link the R2 estimated 
by PVR with any evolutionary model defi ned in advance, 
especially because, although eigenvectors represent patterns 
of phylogenetic relationships among the species, they are 
just linear combinations of distances among taxa and do not 
have evolutionary meanings, and will depend on size and 
shape (in terms of how balanced or pectinate a tree is) of the 
phylogeny. Thus, the question is: how PVR can be interpreted 
in a “model-based” context?

The reasoning for answering this question starts by 
considering that when all eigenvectors are used in a given 
PVR model, then the coeffi cient of determination would be, 
by defi nition, equal to 1.0. On the other hand, as explained 
above, the entire phylogeny will be not considered by leaving 
out some eigenvectors (i.e. the sum of the relative eigenvalues 
associated with the eigenvectors used in the PVR model 
will be less than 100%; see Rohlf, 2001). However, under 
a linear model of trait divergence (usually approximated by 
a Brownian motion process) in which each change in the 
trait is explained by the phylogenetic divergence, a linear 
relationship between the cumulative eigenvalues (i.e. the 
amount of representation, by the eigenvectors used, of the 
phylogenetic relationships among the taxa) and the amount of 
variation explained by PVR (i.e. an estimation of phylogenetic 

Table 1. Criteria used to select the eigenvectors for PVR, showing the number of eigenvectors (k) selected, the cumulative eigenvalues 
associated with selected eigenvectors, the coefficient of determination (R2) of the PVR models, the ratio between R2 and the eigenvalues, 
and the residual autocorrelation as given by the Moran’s I coefficient in the first distance class. Methods used to select the eigenvectors were 
based on the percentage of the representation of the phylogenetic distance matrix (Lambda 95%), the Broken-Stick model, the correlation 
between eigenvectors and the trait of interest (Y), Akaike information criterion (AIC) of the PVR models and the minimization of phylogenetic 
autocorrelation of the residuals (Moran’s I).

Response Criterion k Eigenvectors Eigenvalues R2 R2/Eigenvalue Moran’s I

  in PVR (%)    

GEOM1 Lambda 95% 24 1 to 24 95.0 0.92 0.97 -0.46

Broken-Stick 5 1 to 5 62.4 0.85 1.35 -0.19

Correlation with Y 4 1,2,3,4 56.1 0.83 1.48 -0.21

AIC 6 1-5,7 66.0 0.87 1.32 -0.24

Min. Moran’s I 3 2, 3, 4 36.1 0.80 2.21 0.05

GEOM2 Lambda 95% 24 1 to 24 95.0 0.87 0.92 -0.46

Broken-Stick 5 1 to 5 62.4 0.48 0.76 0.14

Correlation with Y 4 1-3,6 52.9 0.61 1.15 -0.06

AIC 6 1-3,6-8 67.0 0.70 1.04 0.31

 Min. Moran’s I 2 2,5 24.2 0.26 1.09 0.09
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signal) is expected. Departures from this linear relationship 
will happen if a trait is evolving faster or slower than predicted 
by a Brownian model of trait evolution. Using this rationality, 
two of us (JAFDF and LMB), recently developed a method 
called Phylogenetic Signal-Representation curve (PSR; Diniz-
Filho et al., 2012a) by expanding the original PVR approach.

The PSR curve is obtained by fi tting successive PVR 
models with the sequential addition of eigenvectors. The 
fi rst model includes only the fi rst eigenvector; the second 
model includes the fi rst two eigenvectors, and so on. Then, 
the resulting R2 values from PVR models are plotted against 
the cumulative eigenvalues (i.e. λ1, λ1+λ2, λ1+ λ2+λ3, …,λ1+ 
λ2+λ3+…+λn-1). As will be showed subsequently, the PSR 
curve can be interpreted in terms of evolutionary models (see 
Diniz-Filho et al., 2012a). 

The area between the observed PSR curve and a line with 
slope equal to 1, called the PSR area, can be used to measure 
the departure from a Brownian model of trait evolution (by 
convention, areas above the Brownian model are positive 
and areas below the curve are negative). For comparative 
purposes, it is possible to randomize the response variable 
and produce a null PSR curve. Also, it is possible to simulate 
any evolutionary model (e.g. Brownian motion, Ornstein-
Uhlenbeck models, and so on – see Hansen & Martins, 1996) 
using, for example, the APE (Paradis et al., 2004) for the 
R package, and build the PSR curve under this model.

PSR Curve and Cranial Evolution in Theropoda
The PSR curve for GEOM1 (Figure 5A) reveals that, up 

to the fi rst three eigenvectors, the R2 values are below the 
line with slope = 1, so the PVR model explains less than it is 
expected by a Brownian, linear model of trait evolution. In 
other words, although the fi rst three eigenvectors represent 
nearly half of the variation in phylogenetic distances (48.97%; 
see Figure 2), they account for less than 26% of the variation 
in GEOM1. However, a conspicuous increase in the R2 is 
detected with the addition of the fourth eigenvector. Thus, 
in this comparison, the evolution is occurring faster than 
expected by a Brownian model (see Blomberg et al., 2003). 
The PSR curve for GEOM2 is much more linear and is only 
slightly below the line representing Brownian motion across 
its entire length.

The interpretation of these results can be made clearer 
by considering which aspect of the phylogeny is represented 
by the fourth eigenvector that greatly increases the amount 
of explanation (R2) and causes a conspicuous deviation from 
the Brownian model in GEOWM1 (Figure 5B). The fourth 
eigenvector differentiates a clade of derived theropods 
(Velociraptor to Sinornithosaurus, the dromaeosaurid 
theropods) with an array of paraphyletic outgroup taxa, 
including Incisivosaurus, Shuvuuia, and the oviraptorosaurian 
theropods (e.g. Khaan, Citipati). Because the R2 of the model 
that includes the fi rst four eigenvectors is much higher than the 
one expected by the Brownian expectation, one can conclude 
that the morphological variation between these two derived 
clusters is much higher than expected by their relatively 
small phylogenetic distance. This signal refl ects the earlier 

fi ndings of Brusatte et al. (2012), who showed that the skulls 
of oviraptorosaurian theropods are highly morphologically 
aberrant compared to those of other theropods, including their 
close relatives. Perhaps surprisingly, the major differentiation 
in this eigenvector is not between oviraptorosaurs themselves 
and all other theropods, but rather between a paraphyletic 
cluster of oviraptorosaurs and a few outgroup taxa and 
a proximal clade (dromaeosaurids). This result may be 
due to the fact that the two outgroups that cluster with 
oviraptorosaurs, particularly Shuvuuia, are themselves highly 
morphologically aberrant theropods.

Diniz-Filho et al. (2012a) compared the results of the 
PSR curve with the Blomberg’s K-statistic (Blomberg et al., 
2003), which is another method to estimate phylogenetic 
signal in data (also used in the original paper by Brusatte 
et al., 2012). According to this statistic (calculated with 
Kembel’s et al., 2010 picante package), significant 
phylogenetic signal was detected for GEOM1 (K = 0.66) 
and GEOM2 (K = 0.47), because both differed statistically 
from null expectations. Both K-statistic values were less 
than the one, and therefore lower than expected under 
Brownian motion (K=1.0), suggesting that traits (in this 
case changes in theropod skull shape) are evolving slower 
than expected under this linear model. Similarly, the PSR 
areas were also “negative” (-0.035 and -0.069 for GEOM1 
and GEOM2, respectively), corroborating the notion that 
traits are evolving at slower rates than expected under a 
Brownian motion model of trait evolution. Although the 
analyses were restricted to the fi rst two principal components 
of morphological variation (i.e. those that present signifi cant 
phylogenetic signal), it is possible to use all 22 principal 
components to compare PSR area and the Blomberg’s 
K-statistic. Reinforcing the previous fi ndings by Diniz-Filho 
et al. (2012a), there is a high correlation between PSR area 
and Blomberg’s K-statistic (r = 0.833; p < 0.01).

Especially for GEOM1, the PSR curve does not suggest a 
simple departure from the Brownian expectation. The value 
of the PSR area (and of the Blomberg’s K-statistic) suggests 
a rate of evolutionary divergence slower than expected by 
Brownian model only when comparing the deeper nodes in 
the phylogeny. The differences between the PSR curves of 
GEOM1 and GEOM2 reveal that these two dimensions of 
skull variation evolved under different processes, and that 
GEOM1 accelerates in the most derived theropods (especially 
in the restricted portion of the phylogeny including the 
peculiar oviraptorosaurs). Importantly, this illustrates the 
power of PVR in detecting patterns of phylogenetic non-
stationarity and does not assume, during the modeling process, 
a unique pattern (and a unique underlying evolutionary model) 
across the entire phylogeny (Diniz-Fillho et al., 2010; see also 
Eastman et al., 2011). 

Non-stationarity patterns can be also detected by the ratios 
between the R2 and the cumulative eigenvalues associated 
with the eigenvectors used in each model (see Table 1). For 
instance, these ratios are usually above 1.0 for GEOM1 (i.e. 
the R2 is higher than the amount of phylogenetic structure 
being represented), indicating the higher-than-expected 
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differentiation in the derived theropods. For GEOM2, on the 
other hand, the ratios are usually around 1.0.

Finally, it is important to emphasize that the eigenvectors 
used in the PSR curve are extracted without squaring 
phylogenetic distances (which is the default option in most 
software for PCOA). The linear relationship between R2 
and eigenvalues under Brownian motion will appear only 
if distances are not squared, because the original distances 
in the phylogenetic distances matrix are preserved in the 
multivariate ordination space. Despite the large number of 
eigenvectors that are needed to account for patterns, this 
option, which is herein advocated, offers more interesting 
interpretation of eigenvectors by PSR curve in terms of 
evolutionary models.

CORRELATION BETWEEN TRAITS AND 
MULTIPLE REGRESSION MODELS

Correlating S-components
The PVR approach can also be used to test for correlated 

evolution between pairs of traits. Following the framework 
of autoregressive models originally proposed by Cheverud 
et al. (1985), the idea is to correlate the S components of 
two traits (i.e. the model residuals) because they express 
the part of variation in these traits that is independent of the 
phylogenetic relationships between taxa. This is actually a 
partial correlation between traits while holding phylogenetic 
eigenvectors constant, so the degrees of freedom should be 
properly calculated (Martins et al., 2002). 

Figure 5. A, the Phylogenetic Signal-Representation curve for GEOM1 (continuous lines and filled circles) and for GEOM2 (dashed lines and 
empty circles); B, the taxa contrasted by eigenvector 4, which increases the ability of the PVR model in explaining variation in GEOM1.

A

B
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As one example of a correlated evolution test, using the 
theropod dinosaur dataset, Brusatte et al. (2012) looked at the 
relationship between proxies for skull shape (which quantifi es 
an aspect of cranial form) and quantitative metrics of biting 
behavior (which quantifi es an aspect of cranial function). 
The biting behavior metric was calculated by evaluating the 
mechanical advantage, defi ned as the ratio of the muscle 
moment arm to the biting moment arm, for three major groups 
of cranial muscles (Sakamoto et al., 2010; Brusatte et al., 
2012). The standardized ratios were subjected to a principal 
component analysis, and the fi rst three components (BIT1, 
BIT2 and BIT3 hereafter) can then be used as explanatory 
variables. The question is how morphometric variation is 
correlated with these biomechanical variables, within a 
phylogenetic context. Brusatte et al. (2012) provided some 
analyses, but here they are expanded using new methods.

Both GEOM1 and GEOM2 are uncorrelated to BIT1 (r = 
0.07, p > 0.05 and r = -0.21, p > 0.05, respectively), suggesting 
poor correlations between cranial shape and biting function. 
However, these correlations are based on raw morphometric 
and mechanical advantage scores only, and therefore contain 
a mix of phylogenetically shared variation and independent 
variation, due to evolution and not phylogenetic non-
independence, in each taxon. It is important, therefore, to 
decouple these components.

P- and S-components of GEOM1 and GEOM2 is 
estimated using the PVR models estimated with the 
eigenvectors signifi cantly correlated with these variables 
(Table 1). The same procedure was used to estimate the 
P- and S- components of BIT1. S- components of GEOM 1 
and BIT1 were uncorrelated (r = 0.015; p > 0.05), as discussed 
by Brusatte et al. (2012). After using this procedure, it 
was found a highly significant correlation between the 
S-components of GEOM2 and BIT1 (r = -0.53; p < 0.01) 
(Figure 6). Thus, although there is no correlation between 
morphometric variation along GEOM2 and biting function, 
there is a correlation among the unique components of these 
two traits, indicating that taxa that evolved morphologically 
along certain directions evolved to particular biting functions 
(independently of the other phylogenetically related taxa). 

For comparison, it was also ran a PGLS model in R 
(package PGLS), regressing GEOM2 against BIT1 under 
the assumption of correlated residuals (following a Brownian 
model, for simplicity), which is analogous to the correlation 
among PVR S-components, because both approaches estimate 
the input correlation (see Martins et al., 2002). The slope is 
signifi cant at p < 0.01, and the r2 of the model was equal to 
0.388, supporting previous conclusions based on PVR. It is 
diffi cult to fi nd particular explanations for this relationship 
(see Figure 7), but the pattern seems to be driven, or leveraged, 
by Limusaurus.

Thus, in summary, although the fi rst dimension of cranial 
morphometric variation is not correlated with function after 
controlling for phylogenetic effects, an interesting pattern 
appears when using the specifi c component GEOM2, but this 
appears to be driven by a few taxa and does not represent a 
general pattern. Still, this nuance went unnoticed by Brusatte 

et al. (2012) who were using coarser methods. It is also 
possible that other more complex non-stationary patterns in 
phylogeny, localized in a few subclades, can describe this 
potential relationship (see Henderson, 2002; Foth & Rabaut, 
2013), but investigating this in more detail is beyond the 
scope of this paper.

The Partial Regression Approach
Partial regression analysis can be used, according to 

Legendre & Legendre (2012), to measure the amount 
of variation in a response variable that can be attributed 
uniquely to two (or more) sets of explanatory variables (see 
also Safi  & Pettorelli 2010 for a discussion of how to select 
eigenvectors in partial eigenvector regressions). In this 
context, and considering the structure of the dataset used 
in this paper, one can separate the response variables (i.e. 
GEOM1 and GEOM2) from two sets of explanatory variables 
(phylogenetic eigenvectors and BIT1). Following Desdevises 
et al. (2003), the idea is to estimate three coeffi cients of 
determination (R2). The first one (R2

PHY) is obtained by 
regression of the response variable (i.e. the trait of interest) 
on the phylogenetic eigenvectors (the usual coeffi cient of 
determination from PVR); the second (R2

X) is estimated by 
regressing the response variables on the other explanatory 
variables (BIT1, BIT2 and BIT3 in our example), and a third 
one by regressing the response variable on the phylogenetic 
eigenvectors and the explanatory variables together (R2

T). 
If phylogenetic eigenvectors and explanatory variables are 
independent, the total R2

T will be the sum of the R2
X and 

R2
PHY. However, this is rarely the case and, thus, the unique 

contributions of the phylogeny (c) and of the explanatory 
variable X (a) can be obtained by:

a = R2
X – b

c = R2
PHY – b

b = R2
X + R2

PHY – R2
T

where b is the shared infl uence of both sets of explanatory 
variables (X and the phylogeny) on the trait of interest. 
Desdevises et al. (2003), in the context of ecological 
components of variation, interprets this shared component b 
as expressing niche conservatism during the evolution of the 
response variable.

A form of partial regression was carried out by Brusatte 
et al. (2012), but it is expanded on the analyses here. For 
GEOM1, results from the partial regression analysis indicated 
that phylogeny is more important than function in explaining 
cranial morphological variation among theropod dinosaurs 
(Table 2; as pointed out by Brusatte et al., 2012). However, for 
both GEOM1 and GEOM2, a high component b is detected, 
indicating that the phylogenetic components of biting function 
are intrinsically related to morphometric variation, which means 
that it is diffi cult to tease apart the effects of the two sets of 
explanations (phylogeny and function). However, patterns differ 
for GEOM1 and GEOM2 (which is expected, by considering 
their different evolutionary patterns according to PVR and PSR 
curve discussed above). For GEOM1, the overall explanation is 
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much higher (almost 90%), but the unique effects of phylogeny 
and biting function are relatively small. For GEOM2, the 
overall explanation is smaller, but the unique components are 
much higher and, more important, the shared component is 
relatively lower, revealing that it may be possible to decouple 
the effects of phylogeny and function on morphology. Indeed, 
this result agrees with the one based on the previous approach 
of correlating the S-components that revealed a correlation 
between GEOM2 and BIT1 (see Figure 6B).

MULTIVARIATE GENERALIZATIONS 
OF PVR AND PSR CURVE

Monteiro & Abe (1999) soon after the original development 
of PVR, proposed a multivariate generalization of the method 
and applied to geometric morphometric data (see also 
Giannini, 2003; Sakamoto et al., 2010; Sakamoto & Ruta, 
2012; Brusatte et al., 2012). Sakamoto et al. (2010) pioneered 
its application in paleontological data and called it mPVR, 

Figure 6. Relationships between the specific components of morphology (GEOM1 and GEOM2) and the specific component of BIT1 (A and 
B, respectively).

Figure 7. The phylogenetic patterns in the specific components of GEOM2 and BIT1 mapped on the phylogeny.

A B
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in the same framework described above. The idea is simply 
to replace the multiple regression by a multivariate analogue 
(canonical analyses). In ecological analyses, this multivariate 
form is implemented as a Canonical Correlation Analysis 
(CCoA) or Redundancy Analysis (RDA) (see Legendre & 
Legendre, 2012). Thus, all analyses described above can be 
generalized by using multivariate analyses.

Here an mPVR using GEOM1 and GEOM2 as response 
variables is performed. As explained above, each of these traits 
is explained by a different set of phylogenetic eigenvectors. 
The mPVR was performed using all all eigenvectors that were 
correlated with GEOM1 or GEOM2 (see Table 1) and thus our 
mPVR included eigenvectors 1, 2, 3, 4 and 6 as an explanatory 
matrix. The R2 of the RDA was equal to 0.789, revealing a 
strong multivariate signal in both GEOM1 and GEOM2 (as 
already shown by univariate PVR models).

In this context, the PSR curve can also be generalized into 
a multivariate analysis (mPSR). Thus, instead of using the 
coeffi cients of multiple determination (from each successive 
PVR model), one should use the canonical coeffi cient of 
determination (see Sakamoto et al., 2010) and plot against the 
cumulative eigenvalues associated with the eigenvectors from 
PCOA. Results from this method (i.e. mPSR) suggested the 
same pattern portrayed by GEOM1 (Figure 8), indicating the 
non-stationarity of divergence among the derived theropods 
in the clade encompassing Shuvuuia to Velociraptor. 
Statistically, this occurs because the principal component of 
the trait matrix, which is the basis of RDA, is still strongly 
determined by the trait with strongest phylogenetic patterns. 
To support the interpretation of the mPSR curve under 
Brownian motion, 1000 simulations of the two traits under 
this process (see above) and recomputed the mPSR curve were 
performed. As in the univariate case, the Brownian mPSR 
curve is linear in relation to the eigenvalues.

Finally, a partial RDA (see Legendre & Legendre, 2012) 
can be used to estimate the effects of phylogeny, function 
(BIT1) and the intersection between these variables on 
the morphological variation. The canonical coeffi cients of 
determination associated to phylogeny and biting function 
were equal to 0.789 and 0.689, respectively. Of course, 
the mPVR with both sets of explanatory variables cannot 
be the sum of these two values, and the total canonical 
coeffi cient of determination was actually equal to 0.845, 
which suggest again a strong shared component. Results from 
the multivariate variance partitioning indicate that 63% of 
the morphometric variation was explained by phylogenetic 

component of biting function, with unique contributions of 
phylogeny and biting function being estimated as 15.6% and 
5.6%, respectively. Because the different numbers of variables 
in the sets, it is preferable to use adjusted- R2 in these analyses 
(Guenard et al., 2013), but in this particular case there was 
no qualitatively differences in the proportion among the three 
components (a, b, and c).

DIVERSITY AND DISPARITY BASED 
ON EIGENVECTOR REGRESSION

Diniz-Filho et al. (2011) showed that phylogenetic 
eigenvectors can be used to measure phylogenetic diversity, 
by summing the variance of groups of taxa in each eigenvector 
(i.e. this is the trace of the covariance matrix among 
eigenvectors for a group of species). This trace is closely 
correlated with Helmus et al.’s (2007) PSV (Phylogenetic 
Species Variability). This is analogous to evaluating the 
variability of groups of species for a given trait (because 
phylogenetic eigenvectors can be viewed as “traits”, at 
different parts of the phylogeny). Thus, it is possible to 
expand the reasoning and use the PVR to decouple P- and 
S-components for a trait and evaluate if distinct groups of 
species have different variability, or disparity. Measuring 
disparity is a well-known fi eld in paleobiology, and several 
metrics are available for achieving this (Foote, 1993; Wills 
et al., 1994; Ciampaglio et al., 2001; Erwin, 2007). 

As measured using PVR, phylogenetic disparity is 
analogous to the patristic disparity metrics of Smith (1994), 
which calculate disparity based on the number of characters 
changing on a phylogeny, and not the phenetic approaches 
that quantify variation in observed anatomy only, which are 
currently standard in the paleontological disparity literature 
(e.g. Gould, 1991). In a sense, phylogenetic disparity measured 
using PVR is conceptually similar to quantitative measures 
of evolutionary rates, which use variables (e.g. continuous 
characters such as body size, or discrete characters) optimized 
a time-calibrated phylogeny to identify variation in the tempo 
of morphological evolution between groups of taxa (e.g. 
Thomas & Freckleton, 2011; Lloyd et al., 2012).

Brusatte et al. (2012) measured the morphological 
variability in skull shape in different subsets of theropods and 
made comparisons between groups to gauge whether certain 
groups were more or less variable than others. They used 
standard phenetic approaches and calculated disparity based 
on the range and variance of taxa on the principal component 
axes derived from the geometric morphometric analysis 
(GEOM1-5). To demonstrate how PVR can also be used to 
evaluate morphological disparity, one disparity comparison 
also made by Brusatte et al. (2012; Table 1) is presented: the 
disparity of large carnivorous theropods (e.g. Tyrannosaurus 
rex) and other theropods. This comparison was based on all 
four range and variance-based phenetic metrics of disparity 
used by Brusatte et al. (2012). The original values of GEOM1 
and GEOM2 and their P- and S-components were used. Is 
the analysis and separated the 35 taxa into the two categories 
described above (i.e. large carnivores and the other theropods). 

Table 2. Application of Desdevises et al.’s. (2003) approach 
to evaluate the effects of phylogeny and biting function on the 
morphological variation

Response R2 (PHY) R2 (BIT) R2 total a b c
GEOM1 0.831 0.783 0.891 0.060 0.723 0.108
GEOM2 0.609 0.363 0.682 0.073 0.290 0.319

Multivariate 0.789 0.689 0.845 0.056 0.634 0.156
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Then, it was evaluated if the variability of the two groups 
differ for the total, phylogenetic, and specifi c components of 
the two morphometric variables, using both a univariate test 
(Levene’s test for homogeneity of variance) and a multivariate 
test (Anderson’s, 2006 test of multivariate dispersion, based 
on Euclidian distances within and among groups).

These analyses reinforce the conclusion of Brusatte et al. 
(2012) that large theropods are signifi cantly less disparate 
than all other theropods. The new PVR-based disparity 
analyses show that multivariate distances based on GEOM1 
and GEOM2 to the group centroid are signifi cantly smaller 
for large carnivores (0.045) than for other theropods (0.122) 
(F = 4.91; p = 0.033). The differences in disparity are higher 
for the S-component (F = 6.02; p = 0.019) than for the 
P-component (F = 4.19; p = 0.049). Univariate Levene’s 
test of the components of the two variables reveals that 
these patterns are mainly driven by a signifi cant disparity 
in the S-component of GEOM1. This reinforces that small 
variation in large carnivores (which do not form a clade, 
but are members of multiple clades) is due to evolutionary 
convergence probably related to similar feeding styles and is 
not widely a phylogenetic inherited component.

CONCLUDING REMARKS

PVR is a widely used method in paleobiology, as it is 
a straightforward and powerful technique for removing 
phylogenetic non-independence when comparing traits 
(e.g. correlated character evolution tests) or assessing 
the phylogenetic structure in a dataset. Thus, the PVR 
method originally proposed by Diniz-Filho et al. (1998) 
was reviewed and applications discussed in the context 

of paleobiology using Brusatte et al.’s (2012) theropod 
dinosaur dataset. Moreover, improvements in the method 
and its multivariate generalizations, as well as the important 
(and usually neglected) issue of eigenvector selection, were 
discussed. Hopefully, calling attention to all these issues will 
improve the quality of applications of the PVR approach 
to test evolutionary and ecological hypotheses. Indeed, the 
application of the improvements in PVR and the PSR curve 
allowed us to detect a few more complex patterns that went 
unnoticed by Brusatte et al. (2012), especially the non-
stationarity in skull shape evolution.

PVR and its recent expansions allow researchers to 
answer several questions related to trait evolution and 
diversifi cation, even when the processes underlying them 
are non-stationary in the phylogeny. PVR is also easily 
generalized for the multivariate case (using RDA) and 
here for the first time a multivariate generalization of 
the PSR curve was showed. This paper also discussed 
how PVR can be used to evaluate different components 
of morphological disparity, revealing the flexibility of 
eigenfunction approaches. The PVR-based method for 
calculating phylogenetic disparity is an attractive method 
for identifying differences in trait variability among groups, 
with useful applications in many paleobiological studies 
attempting to identify differences in disparity or evolutionary 
rates among clades. 

There are several methods for phylogenetic comparative 
analyses today; many of them based on the unifying 
framework of phylogenetic generalized least squares 
(PGLS). Although the results of these different methods may 
be comparable in most empirical cases (see also Pavoine & 
Ricotta, 2013 for a more theoretical reasoning supporting 
this similarity), there have been some discussions about 
the advantages of each approach and some criticisms of 
the eigenfunction analyses in general. Even if PGLS has 
better statistical performance under simple evolutionary 
models (i.e. see Martins et al., 2002; Freckleton et al., 
2011; Pennell & Harmon, 2013) and also may provide 
a unifying framework (Monteiro, 2013), eigenfunctions 
are usually much easier to implement and are able to deal 
with more complex patterns (such as non-stationarity) that 
may be diffi cult to express in an “a priori” evolutionary 
model. In fact, rather than assuming an evolutionary model, 
such as Brownian motion or Ornstein-Uhlenbeck, and 
adding the expected covariance among taxa into model 
residuals (so that results are conditional to this model, see 
Martins & Hansen, 1997), the PVR uses the phylogenetic 
eigenvectors to empirically model the trait variation. In the 
end, it may be even possible to join the two frameworks, 
as recently proposed by Guenard et al. (2013). Finally, as 
an exploratory tool, the PSR curve developed from the 
original PVR approach, generalized here to a multivariate 
form, allows one to defi ne the expectation of PVR under 
simple evolutionary models, as has been showed in the 
case of theropod dinosaurs, which in turn allows a better 
understanding of how traits evolve over different time scales. 

Figure 8. Multivariate PSR curve based on unadjusted R2 of RDA for 
the two principal components of morphometric variation (filled circles) 
and the mean PSR curve for 1000 Brownian simulations over the 
phylogeny of Theropoda (dashed line).
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Appendix 1. The methods used in this paper can be implemented in several R packages, including mainly PVR, ape and vegan. Other packages, 
including phylobase, motmot, ouch, geiger, pGLS, caper, adephylo, phytools, picante, syncsa, can also be useful for several phylogenetic 
comparative analyses. Below is provided some simple R code for PVR and phylogenetic autocorrelation, based on simulated phylogeny and 
data, which allow implementing the analyses discussed in this paper.

#install these packages from CRAN
library(PVR) 
library(ape)
library(vegan)
library(phylobase)
library(adephylo)

install.packages(“packfor”, repos=”http://R-Forge.R-project.org”)
library(packfor)

#SIMULATED DATA
#phylogenies and traits Y and X
phy <-rcoal(15) #simulated phylogeny with 15 species
plot(phy)
y <-rTraitCont(phy) #trait y simulated under Brownian motion for 15 species
x <- rTraitCont(phy) #trait x simulated under Brownian motion for 15 species

#plot trait on the phylogeny
plot_PHY <- phylo4d(phy, y)
par(mar=rep(.1,4))
table.phylo4d(plot_PHY,ratio.tree=0.25,var.label=1:36,cex.symbol=1,pch=15,box=F)

#THE PVR FUNCTION
#Eigenvector and eigenvalue extraction using PVRdecomp function
eigvec <-PVRdecomp(phy)
eigval <-eigvec@Eigen$values
sum(eigval)
eigp <-eigval/(sum(eigval))
eigpc <-cumsum(eigp)
eigpc <-eigpc*100
plot(eigpc, xlab=”Eigenvalues”,ylab=”% of explanation”, font=1, cex=1.0, pch=16,type=”b”)
#you can use the plot to select a few eigenvector for further modeling, in a sequential approach

#Basic PVR
#modelling trait y
PVR <- PVR(eigvec,trait=y,method=”moran”)
PVR@Selection$Id # look at selected axis using Moran’s I
SCompY <-PVR@PVR$Residuals #extract the S-component that can be used for further analyses

#modelling trait x
PVRX <- PVR(eigvec,trait=x,method=”moran”)
SCompX <-PVRX@PVR$Residuals #extract the S-component that can be used for further analyses

cor(SCompX,SCompY) # correlation between the S-components of PVR for y and x

#testing autocorrelation in PVR’s S-component with a single Moran’s I across phylogeny
w <-vcv.phylo(phy) #calculates phylogenetic covariance/correlation
diag(w)<-0
Moran.I(y,w) # Moran’s I in the original trait y
Moran.I(SCompY,w) # Moran’s I in the PVR residuals, after taking phylogeny into account in y
#correlograms can be generated by breaking a distance matrix (obtained using the
#cophenetic function in ape) into several binary matrices akin to w-matrix used here, 
#and calculating Moran’s I using the function above

#The PSR curve
PSR <- PSR(eigvec,trait=y,null.model=TRUE,Brownian.model=TRUE,times=50)
plot(PSR)
#see below for a multivariate PSR curve using vegan

#Partial regression using PVR, regressing y against eigenvectors and x
PVRX <- PVR(eigvec,trait=y,envVar=x, method=”moran”)
Partition <-PVRX@VarPart #show the fractions ‘a’,’b’,’c’,’d’
VarPartplot(PVRX)
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#MULTIVARIATE PVR USING VEGAN
#If two data matrices ym and xm are created, it is possible to use a multivariate
#partition using the rda function in vegan

y1 <-rTraitCont(phy)
y2 <-rTraitCont(phy)
x1 <- rTraitCont(phy)
x2 <- rTraitCont(phy)

ym <-as.matrix(cbind(y1,y2))
xm <-as.matrix(cbind(x1,x2))

vectors <-eigvec@Eigen$vectors #extract the eigenvector matrix from PVRDecomp object
vec <-as.matrix(vectors)

prda<-rda(ym~vec+xm)
test <-anova(prda, by=”margin”) ## test fractions[a] and [c]
part<-varpart(ym,vec,xm) # creates a variance partition table

#MULTIVARIATE PSR CURVE
r2m <-numeric(ncol(vec))
for(i in 1:ncol(vec)){
  e <- as.matrix(vec[,1:i])
 rdam <-rda(ym~e) 
 r2m[i] <-RsquareAdj(rdam)
}
plot(eigpc,r2)
# for a univariate PSR curve, replace the RDA above by a standard OLS model

# BASIC PVR USING APE AND VEGAN
phydist <-cophenetic(phy)
phydist <- (phydist)^(1/2) # for original PVR from 1998, skip this step
pcord <-pcoa(phydist,correction=”none”, rn=NULL)
vec2 <-pcord$vectors

#linear modeling of y and eigenvector selection based on stepwise
m <-lm(y~vec2)
step <-forward.sel(y,vec2,alpha=0.05)
vecsel <-vec2[,step[,2]] #separates which eigenvectors were selected
pvr2 <-lm(y~vecsel)
RsquareAdj(pvr2)$r.squared
Scomp2 <-pvr$residuals
Moran.I(Scomp2,w) #Moran’s I in residuals


